| lower bound: | 84 |
| upper bound: | 88 |
Construction of a linear code [124,8,84] over GF(4):
[1]: [124, 8, 84] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 0, w^2, w^2, 1, 0, w^2, w^2, w^2, w, 0, 1, 0, 1, 1, w, w, 1, w, w, 0, 0, 1, 0, 1, 0, w^2, 1, 0, 0, 0, 1, w, w^2, 0, w, 1, w, w, w, 0, w^2, w, w, 1, w^2, 1, 0, 1, w^2, 0, w, 0, w, 1, 1, 0, w^2, w, w, w^2, w^2, 0, 1, w^2, 0, 0, w, w^2, 1, w, 1, 0, 1, w, w, 0, w^2, w^2, 1, 1, w^2, w, w, 0, 0, w^2, w^2, 1, w, 1, w^2, 0, w, 1, 0, 1, w, w^2, w, 1, 1, w, w, 1, 0, 1, w, 1, 0, w^2, w, 0, w^2, w^2, 0, w ]
[ 0, 1, 0, 0, 0, 0, 0, w, 0, w^2, w, 0, w, w, 0, w, w^2, 0, 1, w^2, 0, 0, w, 0, w, w, 0, 1, w, 1, 0, w, w^2, w, w^2, w, w, w, w, 1, w^2, w, 1, w^2, w, w, 1, 1, 0, 0, w, 1, w, w^2, 0, 1, w^2, w, w, w, 0, 1, w, w, w, w^2, w, 0, w, 1, 0, w^2, 0, w, w^2, w^2, w, w, w, 1, w^2, 0, 0, 0, 1, w^2, w^2, w^2, 1, w, w, w, 0, w, 1, 0, w^2, w^2, w^2, 1, w^2, w, 0, w, w, 1, w, 0, w, w, 1, w, 0, w^2, 0, w, w, w, w, w^2, 0, 1, 1, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, w^2, 1, 1, 1, 0, 1, 0, 1, w, 0, 0, 1, w^2, w, 0, w^2, 1, w, w, w, 1, 0, 1, w, w^2, 1, 0, 0, 0, 0, w, w^2, w^2, w, w, w^2, 0, w^2, w^2, 0, 0, 0, 1, w, w, w, w^2, 0, 0, w^2, w^2, 1, w, w^2, w, 1, w, 0, w, w^2, w^2, w, w, 1, 0, 0, w^2, 1, 0, 1, w^2, 0, w, 0, w, w, 1, w^2, w, 0, w, w^2, w^2, 1, w^2, w, w, 1, 1, 0, w^2, w^2, 0, 1, w, 0, 0, w, w, 1, 1, w, 0, 0, 0, w^2, w^2, 1, w^2, 1, 0, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, w^2, 0, 1, w^2, 1, w, 0, w, w, w, 1, w^2, 1, w, w^2, 1, w, w^2, 1, 1, w, 1, w^2, w^2, 0, 0, w, w^2, w^2, w, w^2, w, 0, 0, w, w, w, 1, w, w, w, 0, w^2, w, w, 1, w, w^2, 0, w, 0, 0, w^2, w, w^2, w^2, 0, w, 1, w^2, w^2, 1, w^2, w, 0, 0, 1, 0, 1, w^2, w^2, 0, w, 0, 1, 0, 0, 1, w, w, w, w^2, w^2, w, w, 1, 1, w, 1, 1, w, 1, w^2, w, 1, 1, 1, w, 1, w^2, w, 1, 1, w, w^2, 0, w^2, 1, 0, 0, 1, w^2, 1, 1, 0, 1, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, w, 0, 1, 0, 1, w^2, w, 0, w^2, 0, 0, 0, 0, w^2, w, 1, 0, w^2, w, w, 1, w, w, w^2, w^2, w, w^2, w^2, w, 1, w^2, w^2, 1, w, w, 0, 1, w, w, w, 1, w^2, 1, 0, w, 0, w, 0, w^2, 1, w^2, w, w, w, w^2, w^2, w, 1, w, 0, w^2, 1, 0, 0, w, w^2, 1, 0, 0, w, w^2, w, w, 0, 0, 1, w^2, w, w, w^2, 1, 1, 1, w, 1, 1, 0, w^2, w, 1, 0, 1, 0, w, w^2, w^2, w, w, w^2, 1, 0, w, w^2, 1, w^2, w, w^2, w, 0, 1, 0, w^2, w, 0, 1, w, w^2 ]
[ 0, 0, 0, 0, 0, 1, 0, w^2, 0, 1, 1, w^2, 1, 1, w, 0, w^2, 1, 0, w^2, w^2, w^2, w^2, w^2, 0, 1, 0, w^2, w, 0, 0, w, w^2, w^2, 1, 1, w^2, w^2, w, w, w, w, 0, w^2, 0, w^2, 0, w^2, 0, w, w, w^2, w^2, 0, 0, 1, 0, 1, 0, 0, 1, w^2, 0, 1, w, 1, 1, 1, 1, 1, w^2, 1, w, 0, 1, w, 0, 1, 1, w^2, w^2, 0, w, 1, w, 1, 1, 0, w^2, 1, w, 0, 0, w, w, 0, 0, 1, w^2, 0, w, w, 1, w, w, 0, 1, w, 1, w, w^2, w^2, 0, w, w, 0, w, 1, w^2, 1, w^2, 1, 0, w ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, w, w, w, w^2, w^2, w, 0, w^2, w, w, 0, 1, w, 1, 1, w, 0, w, 1, w^2, 0, w^2, w, w^2, w^2, 0, 1, 0, 0, 1, w^2, 1, w^2, 1, 1, 0, w^2, w, w^2, w^2, w^2, 0, w^2, w, w, w, w, 1, 0, w^2, w^2, w, w^2, 1, w, 1, 1, w, w, w, 0, w^2, 0, 0, 0, 0, 0, w, w, w^2, 0, 1, 0, w, 1, w, w^2, w^2, 0, w, w^2, 1, 1, 0, 1, w, 1, w^2, w^2, w, 1, w^2, 0, 1, w, w, 1, 1, 1, 1, 1, 0, 1, 0, 1, w^2, 1, w, w, w, w, 1, w^2, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w, 1, 0, 1, 1, w^2, 0, w^2, w, w, 0, w, w, w^2, 0, w, 1, w, w, w^2, 0, w^2, w, w^2, w^2, w^2, w^2, 1, 1, 1, 0, w, 0, w, w^2, w, 0, 0, 1, 1, w^2, w^2, 0, 1, w^2, 1, 1, w^2, 0, 0, 1, w^2, w, 1, w, w^2, w, 1, w^2, 0, 1, w, 0, 0, 0, w, 0, 0, 0, 0, w^2, 1, 0, w, w^2, 1, 0, 0, 1, w, 1, 0, 1, w^2, w^2, w^2, w^2, w^2, 1, 0, w, 0, w, w^2, w^2, w^2, 0, w, w, 0, w^2, 0, w^2, 1, w, 0, 0, w, w^2, 0, w^2, w, w, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2010-04-28
Lb(124,8) = 83 is found by truncation of: Lb(125,8) = 84 BZ Ub(124,8) = 88 follows by a one-step Griesmer bound from: Ub(35,7) = 22 is found by considering shortening to: Ub(32,4) = 22 GH
GH: P.P. Greenough & R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1994) 187-199.
Notes
|