| lower bound: | 68 |
| upper bound: | 73 |
Construction of a linear code [104,8,68] over GF(4):
[1]: [108, 8, 72] Linear Code over GF(2^2)
Code found by Plamen Hristov
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, w, w^2, 1, 0, 1, 1, w, w, 0, w, w^2, w, 1, w^2, w, 1, 0, 0, 0, w, 0, w^2, 1, 0, 0, 1, w, w, w^2, 0, w^2, w, 1, 1, 1, w, w, 1, 1, 0, w^2, 0, w, 1, w, w^2, w^2, w^2, 0, w^2, w^2, 1, 1, 1, w^2, w, 1, 1, 0, 0, 0, w^2, 0, w^2, 0, 0, w, 1, 1, w, w^2, 0, 1, w, w^2, 0, w, 0, 1, 0, 0, 0, w, w, 1, 0, w^2, 1, 0, w, 0, w, 1, 0, w, 1, 1, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, w^2, w, 0, 0, 0, 1, w^2, w, 0, w^2, w, 1, 0, w^2, 1, w^2, w, 1, 1, 0, 0, 1, w, w, 0, 1, 0, w^2, 0, w^2, 0, w^2, w, w, w, w, w, 0, w^2, 1, w, 1, w, w^2, 1, 1, 0, 0, 1, 1, w^2, w, 1, 0, w, 1, w^2, w, 1, w, 1, 0, 0, w, w^2, w, w^2, 0, 1, 1, w, 0, 0, w^2, w^2, 0, 0, w^2, 1, w, w^2, 1, 0, 0, 1, w^2, 1, 1, w, 0, 1, 1, w, 1, 1, 1, 1, w, w^2, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, w^2, w, 0, 0, 0, 1, w^2, w, 0, w^2, w, 1, w, w^2, 1, w^2, w, 1, 1, 0, 0, 1, w, w, 0, 1, 0, w^2, 0, w^2, 0, w^2, w, w, w, w, w, 0, w^2, 1, w, 1, w, w^2, 1, 1, 0, 0, 1, 1, w^2, w, 1, 0, 0, 1, w^2, w, 1, w, 1, 0, 0, w, w^2, w, w^2, 0, 1, 1, w, 0, 0, w^2, w^2, 1, 0, w^2, 1, w, w^2, 1, 0, 0, 1, w^2, 1, 1, w, 0, 1, 1, w, 1, 1, 1, w^2, 1, w ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, w^2, 0, w^2, w, w, 1, 1, w, 0, w, w^2, w, 0, 0, w, 1, w^2, w^2, w^2, 1, 1, w^2, w^2, 0, 0, 1, w, 1, 1, 1, 0, w, w^2, w, w^2, w^2, 1, w, 0, w^2, 0, w, w^2, w^2, w, w^2, 1, w, 1, w^2, 0, 1, w^2, w, 1, 1, 0, w^2, 1, 0, 1, 1, w, 1, w, w^2, 0, w, w^2, 1, w, w, 0, w^2, w, 0, w, w, 1, w^2, w^2, 1, w^2, 0, w^2, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, w^2, w, 0, 1, 1, 0, w, w^2, 0, w, w, w^2, 1, 0, w, w, w, w, 1, w^2, w, w^2, w^2, w^2, w, 1, w, 0, w, w^2, 0, 1, 1, 0, w, 1, w, 1, 0, w, w, 1, w^2, 1, 0, 0, 1, 0, w^2, w, 1, 1, w, 0, 1, 1, w, w^2, w^2, 1, w, w, w^2, w^2, 1, w^2, 0, 0, 0, w, 0, 1, 1, w^2, 0, w, w^2, w, w, 0, w, w^2, w^2, 0, w^2, 0, 0, w^2, 0, 0, w, w^2, w, w^2, w^2, w, w, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, w, w^2, w^2, w, 0, 0, w^2, w^2, w^2, 1, w^2, w^2, w^2, w, 1, 0, w^2, 0, w, w, w, w, w^2, w^2, 1, w^2, w^2, 0, w, 1, 1, w, w, w^2, 0, w^2, w, 1, w, 0, w^2, 0, w^2, w, w, 1, w, 1, 1, 0, 0, w, w^2, w^2, w^2, 1, 1, w, w^2, 0, w^2, w^2, 1, w^2, w, w, w^2, 1, 0, w, w, w^2, w^2, 0, w^2, w, w, 0, 1, w^2, 0, w, 0, w, 0, 0, w, w^2, 1, w, w^2, w^2, 0, 1, 1, w, 0, 0, w, w ]
[ 0, 0, 0, 0, 0, 0, 1, 0, w^2, 1, w, 1, 1, 0, w^2, 0, w, w, 1, w, 1, w, 1, w^2, 1, 0, 0, w, w, w^2, w, 1, 0, 1, w^2, 0, 1, w^2, w^2, 1, 0, w^2, 0, w^2, 0, w^2, 0, 1, w^2, w^2, w, w^2, w^2, 1, 0, 0, w^2, w^2, 0, w, 0, 0, 0, 1, w^2, 0, 1, 0, 0, w^2, w^2, w^2, w^2, 0, w, w^2, 0, w^2, 1, w^2, 1, w^2, w^2, w, w, w, 1, 1, 0, 0, w, 0, w^2, 1, w^2, w, 1, w, w, w, w^2, 1, w, 1, w^2, 1, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, w, w^2, 1, 0, 1, 1, w, w, 0, w, w^2, 1, 1, w^2, w, 1, 0, 0, 0, w, 0, w^2, 1, 0, 0, 1, w, w, w^2, 0, w^2, w, w, 1, 1, w, w, 1, 1, 0, w^2, 0, w, 1, w, w^2, w^2, w^2, 0, w^2, w^2, 1, 1, 1, w^2, w, 1, 1, 0, 0, 0, w^2, 0, w^2, 0, 0, w, 1, 1, w, w^2, 0, 1, w, 1, 0, w, 0, 1, 0, 0, 0, w, w, 1, 0, w^2, 1, 0, w, 0, w, 1, 0, w, w^2, 0, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [104, 8, 68] Linear Code over GF(2^2)
Puncturing of [1] at { 105 .. 108 }
last modified: 2008-04-25
Lb(104,8) = 67 is found by truncation of: Lb(106,8) = 69 MST Ub(104,8) = 73 follows by a one-step Griesmer bound from: Ub(30,7) = 18 is found by considering shortening to: Ub(28,5) = 18 is found by considering truncation to: Ub(26,5) = 16 BGV
MST: T. Maruta, M. Shinohara & M. Takenaka, Constructing linear codes from some orbits of projectivities, to appear in Discr. Math.
Notes
|