| lower bound: | 60 | 
| upper bound: | 62 | 
Construction of a linear code [88,7,60] over GF(4):
[1]:  [88, 7, 60] Linear Code over GF(2^2)
     Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 1, 0, w, w^2, 1, w, w^2, 1, 0, 0, 0, 0, 1, w^2, w, w^2, w, w^2, w^2, 0, 0, 1, w, w, 0, 0, w, w, 1, 0, 0, 1, 1, 1, w^2, w^2, w^2, 1, w, 1, 0, w, w, 0, w^2, w^2, 1, 0, w, w^2, 1, w^2, 1, 1, 0, w^2, w, w, w, 1, 0, w, 0, w, 1, w^2, w^2, w, w^2, w, w^2, w^2, w, 0, w, 0, 1, 0, 1, 1, 0, w ]
[ 0, 1, 0, 0, 0, 1, 1, 0, 0, w, w^2, 1, w, 1, 1, w, 0, w, w^2, 0, 0, 1, 1, w, w, 0, 1, w, w, w^2, 0, w, w, 0, 0, 1, w, w^2, 1, 1, 0, w^2, 1, 0, 0, 0, w, 1, w^2, 0, 1, w, 1, 1, w, 1, w, w^2, 1, 0, 1, w, 0, w, w^2, w, 0, w^2, 0, w^2, w^2, 1, 1, 0, 0, 1, 1, w^2, w^2, w^2, w, w, 0, 0, 1, w^2, w, w^2 ]
[ 0, 0, 1, 0, 0, w^2, w^2, 0, 0, 0, w^2, 0, w, w^2, 1, w^2, 0, w, 1, 1, w, w, 0, w^2, 1, 1, w, w, 1, 0, w, 1, 1, w^2, 1, w, 0, w^2, 0, w^2, w, 0, w, 1, 0, 0, w^2, 1, 1, w^2, w^2, w^2, 1, w^2, w, 0, 0, w^2, 0, w, w^2, w, 0, w^2, w, w, 0, 0, 1, 1, w, w, 0, 0, 1, 1, 1, 0, 0, w, 1, w^2, w^2, w, w, w^2, w^2, 1 ]
[ 0, 0, 0, 1, 0, 0, w^2, 0, w^2, 0, 1, w, w, w, w^2, 1, 0, w, w, 0, w, 1, 0, w^2, w, w^2, 1, 0, w^2, 0, w, 1, w, w^2, w^2, 0, w^2, w, 0, 1, 0, w^2, w^2, 0, 1, w, 0, w^2, w, 1, 0, 0, 1, w^2, w^2, w^2, w^2, 1, w, 0, w, w, 1, w, 0, w^2, w, 0, w^2, 1, 1, w^2, 1, 0, 1, 0, w, 1, w^2, w^2, 1, 1, 1, 1, 1, w^2, w^2, 1 ]
[ 0, 0, 0, 0, 1, w^2, 0, 0, w^2, w, 1, w^2, 0, w, w, 1, 0, w, 0, 1, w^2, 1, w, 0, w^2, w^2, w^2, 1, 1, w^2, 0, 1, w, w^2, 0, 1, 0, w^2, 0, w, w^2, 1, 0, 1, w, 1, w, 0, w^2, w^2, w^2, 1, 1, 1, w^2, w, 1, w, 0, 0, w, w^2, 0, 0, 1, w, w, 0, 0, w, 0, 1, 0, w^2, w, 1, w, w^2, 0, w, 0, w, w^2, 1, w, w, 1, w ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w, w, w, w, w, w, w, w, w, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, w, w, w, w, 1, 0, w^2, 1, w, 0, 0, 1, 0, w, w^2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2007-09-28
Lb(88,7) = 58 is found by truncation of: Lb(91,7) = 61 Gu Ub(88,7) = 62 follows by a one-step Griesmer bound from: Ub(25,6) = 15 is found by considering truncation to: Ub(23,6) = 13 BGV
Gu: T. A. Gulliver, personal communications 1993-1998.
| Notes
 |