| lower bound: | 52 | 
| upper bound: | 52 | 
Construction of a linear code [76,7,52] over GF(4):
[1]:  [76, 7, 52] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 1, w^2, 0, 0, 0, w, 0, 1, 0, w, w, w^2, w^2, 1, w^2, 1, w^2, 1, w, w^2, 0, w^2, 1, w^2, w^2, w, 1, 1, 1, w, 0, 0, w, 1, w^2, 0, w, 0, w, 1, 0, w, 1, 1, 0, 0, 1, 0, w, w^2, 1, 1, 1, w, 1, w^2, w, 1, w^2, w^2, 1, w, w^2, w, w, w^2, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, w, w^2, 0, 0, w, w, 1, 1, w, 0, 1, 0, w, w, w, w, w, w^2, 1, w^2, w^2, w, w, 0, 1, w^2, 0, 0, w^2, w, 0, w, w^2, w, w^2, w, w, w, w^2, 1, w, w^2, 0, 1, 0, 1, 1, w, 1, w, 0, 0, w^2, w^2, 0, 0, w, 1, w, 0, 1, 0, w^2, w, w^2, 0, w ]
[ 0, 0, 1, 0, 0, 0, 0, w^2, w, w, w, w^2, 0, 1, w, 1, 1, 0, w^2, w, w^2, w^2, 0, 1, 0, 1, w^2, 1, 1, 1, 0, 0, 0, 1, w, 0, w^2, 1, w^2, w, 1, 1, 1, w, w, w, w^2, 1, w^2, 0, 1, 0, 0, 1, w^2, 1, 0, 0, w, 1, w^2, 1, 0, w, 0, 0, w, 1, w, 1, 1, w^2, 0, w^2, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, w^2, w, w, w, w^2, 0, 1, w, 1, 1, 0, w^2, w, w^2, w^2, 0, 1, 0, 1, w^2, 1, 1, 1, 0, 0, 0, 1, w, 0, w^2, 1, w^2, w, 1, 1, 1, w, w, w, w^2, 1, w^2, 0, 1, 0, 0, 1, w^2, 1, 0, 0, w, 1, w^2, 1, w, w^2, w, 1, 1, w, w^2, w^2, w^2, 1, w, 1, w ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, w, w, w, 1, 0, 0, w, w^2, w^2, w^2, 0, w^2, 0, w, w^2, 0, w, w, w^2, w, 0, w, w^2, w, 1, 0, w^2, w, w^2, 1, 1, w^2, w, 1, w^2, w, 0, w^2, w^2, w^2, w, 1, 1, 0, 1, 1, 1, w, 1, 1, w^2, w^2, w, 1, 1, 0, 0, 1, w^2, w^2, 1, 0, 0, 1, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 1, 0, w, w^2, 0, 0, w, w, 1, 1, w, 0, 1, 0, w, w, w, w, w, w^2, 1, w^2, w^2, w, w, 0, 1, w^2, 0, 0, w^2, w, 0, w, w^2, w, w^2, w, w, w, w^2, 1, w, w^2, 0, 1, 0, 1, 1, w, 1, w, 0, 0, w^2, w^2, 0, 1, 0, 0, 1, 0, w^2, w^2, 1, 0, 1, 0, w^2, w^2, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, w^2, 0, 0, 0, w, 0, 1, 0, w, w, w^2, w^2, 1, w^2, 1, w^2, 1, w, w^2, 0, w^2, 1, w^2, w^2, w, 1, 1, 1, w, 0, 0, w, 1, w^2, 0, w, 0, w, 1, 0, w, 1, 1, 0, 0, 1, 0, w, w^2, 1, 1, 1, w, 1, 1, w^2, 0, 0, 1, w^2, 1, w^2, 0, 0, 1, w^2, 1, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-05-17
Lb(76,7) = 51 is found by truncation of: Lb(77,7) = 52 BET Ub(76,7) = 52 follows by a one-step Griesmer bound from: Ub(23,6) = 13 BGV
BGV: Iliya Bouyukliev, Markus Grassl & Zlatko Varbanov, New bounds for n4(k;d) and classification of some optimal codes over GF(4), Discrete Mathematics 281 (2004) 43-66.
| Notes
 |