| lower bound: | 45 | 
| upper bound: | 48 | 
Construction of a linear code [65,7,45] over GF(5):
[1]:  [1, 1, 1] Cyclic Linear Code over GF(5)
     RepetitionCode of length 1
[2]:  [64, 6, 45] Quasicyclic of degree 16 Linear Code over GF(5)
     QuasiCyclicCode of length 64 stacked to height 3 with generating polynomials: 3*x^3 + x^2 + x,  x^3 + x^2 + 3,  4*x^3 + 3*x^2 + 3*x,  x^2 + 2*x + 2,  2*x^3 + 2*x^2 + 1,  4*x^2 + 3*x + 3,  4*x^3 + 4*x^2 + 2,  4*x^3 + 4*x^2 + 2,  0,  2*x^3 + 3*x^2 + 2*x + 3,  x^3 + 2*x^2 + 2*x,  x^3 + 3*x^2 + 4*x + 2,  3*x^3 + 3*x^2 + 4,  4*x^3 + 2*x^2 + x + 3,  0,  3*x^3 + 2*x^2 + 3*x + 2,  4*x^3 + x^2,  4*x^3 + x^2,  2*x^2 + 3*x,  2*x^3 + 3,  3*x^3 + 4*x^2 + 3,  3*x^3 + x^2 + 1,  3*x^3 + x + 1,  3*x^3 + 4*x^2 + 3*x,  3*x^3 + 4*x^2 + 3*x,  2*x^2 + 3,  4*x^3 + x,  3*x^3 + x^2 + 1,  4*x^3 + 3*x^2 + x + 2,  4*x^3 + x^2 + 3*x + 2,  4*x^3 + 4*x^2 + 2*x,  4*x^3 + 4*x^2 + x + 1,  4*x^3 + 1,  3*x^3 + 2*x,  4*x^3 + x^2 + x + 4,  x^3 + 3*x^2 + x,  3*x^3 + 2*x^2 + 2*x + 3,  x^3 + x^2 + 2*x + 1,  x^3 + 2*x^2 + 3*x + 4,  x^2 + 4,  2*x^3 + x^2 + x + 1,  2*x^3 + 3*x^2,  2*x^3 + 2*x^2 + 2*x + 4,  x^2 + 4*x,  2*x^3 + x^2 + 2*x,  2*x^3 + 3*x^2 + 4*x + 1,  x^2 + 3*x + 1,  x^3 + 3*x^2 + 2*x + 4
[3]:  [64, 7, 44] Quasicyclic of degree 16 Linear Code over GF(5)
     QuasiCyclicCode of length 64 stacked to height 3 with generating polynomials: x,  x,  x^3 + 4*x^2 + 3*x + 3,  3*x^3 + 4*x^2 + 4*x,  3*x^3 + x^2 + x + 1,  2*x^3 + 2*x^2 + 2*x,  4*x^2 + x + 1,  4*x^3 + 4*x^2 + x + 2,  3*x^3 + x^2 + 2*x,  x^2 + 3*x + 2,  4*x^3 + 4*x + 3,  3*x^3 + x + 2,  3*x^3 + 3*x^2,  2*x + 4,  x^2,  2*x^3 + 2*x^2 + x + 1,  2*x^3 + 1,  2*x^3 + 2*x^2 + 4*x,  x^3 + 2*x^2 + 2*x + 3,  4*x^2 + 3*x + 1,  x^3 + 3*x^2 + 2*x + 2,  x^3 + 3*x^2 + 4*x,  x^3 + x^2 + x,  3*x^3 + 3*x^2 + 4*x + 3,  x^3 + 3*x^2 + 3*x + 1,  4*x^2 + 2*x + 2,  3,  3*x^3 + x^2 + x + 3,  4*x^3 + 3*x^2 + x,  x^3 + 3*x + 4,  4*x^3 + x^2 + 3,  3*x^3 + 3*x + 2,  x^3 + 1,  2*x^3 + 4*x^2 + x,  3*x^2 + 4,  x^2 + x,  3*x^3 + 4*x^2 + 2*x + 3,  x^3 + 4*x^2 + 2,  2*x^3 + x^2 + 4*x,  2*x^3 + 2*x^2 + 2*x + 1,  x^3 + 2*x^2 + 4*x,  3*x^3 + 3*x^2 + 2*x + 4,  4*x + 3,  x^3 + 2*x + 4,  2*x^3 + 3*x^2 + 2*x,  3*x^3 + 4*x^2 + x + 4,  x^3 + 4*x + 2,  4*x^3 + 2*x^2 + 3*x + 3
[4]:  [65, 7, 45] Linear Code over GF(5)
     ConstructionX using [3] [2] and [1]
last modified: 2006-09-27
Lb(65,7) = 44 is found by truncation of: Lb(66,7) = 45 GW2 Ub(65,7) = 48 follows by a one-step Griesmer bound from: Ub(16,6) = 9 is found by considering shortening to: Ub(13,3) = 9 is found by considering truncation to: Ub(12,3) = 8 Hi4
Hi4: R. Hill, Optimal linear codes, pp. 75-104 in: Cryptography and Coding II (C. Mitchell, ed.), Oxford Univ. Press, 1992.
Notes
  |