Bounds on the minimum distance of linear codes
Bounds on linear codes [48,7] over GF(4)
| lower bound: | 31 | 
| upper bound: | 32 | 
Construction
Construction of a linear code [48,7,31] over GF(4):
[1]:  [49, 7, 32] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w, w, 1, 0, w, 0, 0, w^2, w, 0, w^2, w^2, 1, w, 0, 0, 0, 1, 0, w^2, w, w^2, w, w^2, w^2, 1, 1, 0, w, 0, 0, w, 1, 1, 1, w, w, 0, w, 1, w, w^2, w ]
[ 0, 1, 0, 0, 0, 0, w, 1, w, w, 0, 0, 0, 1, w^2, 0, 0, w^2, 1, w^2, w, w, w^2, w^2, 1, w^2, 0, 0, 0, 1, w, w, 0, 1, w^2, w^2, 1, w, w^2, w, 1, w, w^2, 1, 1, 1, 0, w, w^2 ]
[ 0, 0, 1, 0, 0, 0, 1, w, w, 0, 0, w, 0, w, 1, 1, w, 1, w, w^2, 0, w, w^2, w, 1, 0, w, 0, 1, 1, w^2, 1, w^2, w, w, 0, w^2, w, 0, 0, w^2, w^2, 0, 0, w, 1, w^2, 0, 1 ]
[ 0, 0, 0, 1, 0, 0, w, 1, w, w^2, w^2, 1, 0, 0, w, w, w^2, w^2, 1, w, 1, w^2, 0, w, 1, w^2, w, 0, 1, w, w, 1, w, 0, 1, 1, 1, 1, w^2, 0, w, w^2, 1, w^2, w, w, 0, 1, 0 ]
[ 0, 0, 0, 0, 1, 0, w, w, 1, 1, w^2, w^2, 0, w, w, 1, 0, 1, w^2, w^2, 0, w, 0, 1, 1, 0, w^2, w^2, 0, w, 0, 0, w^2, w^2, w, w^2, 1, w^2, w^2, 1, w, 0, 0, w^2, 1, w^2, 0, w, 0 ]
[ 0, 0, 0, 0, 0, 1, 1, w, w, w^2, 1, w^2, 0, w, 0, w^2, w^2, w, w, 1, 1, w, w^2, 0, w, 1, w^2, w, 0, 1, 1, w, w, 1, 1, 0, 1, w^2, 1, w, w^2, 0, w^2, w, 1, 0, 1, w, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [48, 7, 31] Linear Code over GF(2^2)
     Puncturing of [1] at { 49 }
last modified: 2009-03-02
From Brouwer's table (as of 2007-02-13)
Lb(48,7) = 30 is found by shortening of:
Lb(50,9) = 30 is found by truncation of:
Lb(52,9) = 32 DaH
Ub(48,7) = 32 follows by the Griesmer bound.
 References 
 DaH: 
Rumen Daskalov & Plamen Hristov, New One-Generator Quasi-Cyclic Codes over 
GF(7), preprint, Oct 2001. R. Daskalov & P Hristov, New One-Generator 
Quasi-Twisted Codes over GF(5), (preprint) Oct. 2001. R. Daskalov & P Hristov, 
New Quasi-Twisted Degenerate Ternary Linear Codes, preprint, Nov 2001. 
Email, 2002-2003.
| Notes
All codes establishing the lower bounds were constructed using 
     MAGMA.
Upper bounds are taken from the tables of Andries E. Brouwer, with the exception of codes over GF(7) with n>50.  
For most of these codes, the upper bounds are rather weak.  
Upper bounds for codes over GF(7) with small dimension have been provided by Rumen Daskalov.
Special thanks to John Cannon for his support in this project.
A prototype version of MAGMA's code database  over GF(2) was
written by Tat Chan in 1999 and extended later that year by 
Damien Fisher. The current release version was 
developed by Greg White over the period 2001-2006.
Thanks also to Allan Steel for his MAGMA support.
My apologies to all authors that have contributed codes to this table for not giving specific credits.
If you have found any code improving the bounds or some errors, please send me an e-mail:codes [at] codetables.de
 | 
Homepage | 
New Query | 
Contact
This page is maintained by 
Markus Grassl
 (codes@codetables.de).
Last change: 30.12.2011