| lower bound: | 22 | 
| upper bound: | 23 | 
Construction of a linear code [36,7,22] over GF(4):
[1]:  [36, 7, 22] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, w, 0, 0, w^2, 1, 0, 0, w^2, 1, w^2, w, w^2, 0, w^2, w, w, w, w, w^2, w, 0, 0, 1, 1, 0, 1, 0, w^2, 0, w, w ]
[ 0, 1, 0, 0, 0, 1, 0, 0, w^2, 0, w, w, w^2, 1, w, w^2, w^2, 0, w^2, w, w, 0, w^2, 0, 0, 1, 0, w, w, w, w, w, 0, w^2, 0, 1 ]
[ 0, 0, 1, 0, 0, w^2, 0, 0, w, 0, w, w^2, 0, 1, w^2, w, 0, 1, 1, 1, w, w, 1, w^2, 0, w, 1, 0, w^2, 0, 1, w, 0, 0, 1, w^2 ]
[ 0, 0, 0, 1, 0, w, 0, 0, 1, w^2, w^2, 0, 0, w^2, 0, w^2, w^2, w^2, 1, 1, 0, w, w, w, 1, w, 0, 1, w^2, w, 0, 1, 1, 0, 0, w ]
[ 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, w^2, w, w^2, w^2, 0, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, 1, 1, 1, w, w^2, 1, w, 1, w^2, w, w^2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, w, w^2, 0, w, w^2, 1, 1, 1, w, w^2, w^2, 0, w, 0, w^2, w^2, 0, w, w, 0, 1, 1, 1, w, 1, w, w^2, w ]
[ 0, 0, 0, 0, 0, 0, 0, 1, w^2, w, 1, w^2, w, 0, 0, 0, w^2, w, w, 1, w^2, 1, w, w, 1, w^2, w^2, 1, 0, 0, 1, w, 1, w, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2009-03-02
Lb(36,7) = 21 is found by truncation of: Lb(39,7) = 24 Gu Ub(36,7) = 23 is found by considering shortening to: Ub(33,4) = 23 is found by considering truncation to: Ub(32,4) = 22 GH
Gu: T. A. Gulliver, personal communications 1993-1998.
| Notes
 |