| lower bound: | 173 | 
| upper bound: | 176 | 
Construction of a linear code [240,7,173] over GF(4):
[1]:  [240, 7, 173] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, w, w, 0, 1, 0, w, 0, 1, w, 1, 0, 0, w, 1, w, 0, w^2, w^2, 1, 0, 0, w^2, w, 0, w^2, 1, 0, w^2, w, 0, w, 0, 0, 0, w, 0, w^2, w^2, w, 1, 0, 0, 0, w^2, 0, w^2, 0, 0, w^2, w, w, w^2, 0, 0, 0, w, w, 1, 1, 1, 1, w^2, 0, w^2, 1, w^2, 0, w, 1, 1, w^2, w, w, w, w^2, w^2, 0, 1, 0, w, w^2, w^2, 1, w, w, w, 1, w, 1, 1, 1, 1, 0, w, w, 0, 1, w^2, w, w^2, w^2, 0, 1, w, w, 1, w, 0, 0, 0, w^2, w, w, w, 0, 1, w^2, 1, w^2, 0, w, w^2, 1, 1, w^2, w^2, 0, 1, w, w^2, 1, w^2, w^2, w^2, 1, w, 1, 0, w, w, w^2, 0, 1, w, w^2, w^2, w^2, 1, w, 0, w^2, 1, w, 1, w, 0, w^2, 1, 0, 1, w^2, w, w, w, 1, w^2, w, 0, 1, 0, 1, w, w, w, 1, w^2, 1, 0, w, w, w^2, 1, 1, 0, w^2, 0, w, w, 1, w, 0, w, 0, 1, w^2, w^2, 0, w, 0, 0, 1, 0, 1, 1, w, w, 1, w^2, w^2, 0, w, 1, 0, w, 0, 1, w^2, 1, 1, w^2, 0, 1, w, 1, w, 1, 1, 0, 1, w^2, w^2, 1, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, w^2, 1, w, w, 1, w^2, w, w, 1, 0, 1, 0, w^2, 0, w, 0, 1, w, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, w, w^2, w, 0, 0, w^2, w, 1, w, 0, 0, 1, 0, 0, 1, w^2, 1, w^2, 0, 1, 0, 1, w^2, w^2, 0, 0, w^2, 1, 0, w^2, w^2, w^2, 0, w^2, 1, 1, 0, w^2, w^2, 0, w^2, 0, 0, 1, 1, w^2, w, w^2, w, 1, w^2, w^2, w, 1, w, 1, 1, 0, w, 0, w^2, w^2, w^2, w, w^2, 1, w, w, 0, 0, w^2, w, w^2, w, w, 1, 0, w, w, 0, 0, 1, 0, 1, 1, w, w, 0, 1, 0, w^2, w^2, w^2, 1, w^2, 0, w, w^2, w, w, w^2, 1, 0, w, w, 1, w, 0, 1, w^2, 1, w^2, w^2, w, w, w^2, w, w, 1, w, 0, 1, w^2, w, 0, w, w, 1, 1, 1, w, 0, 0, 1, 1, 0, 0, 0, w, w, 1, w, w, 1, 1, 0, 0, 1, 1, w^2, 1, w^2, 1, w^2, 1, 1, w^2, w^2, 1, 0, w, w, w^2, w, w, 0, w, w^2, w^2, w, 0, w, 1, w, 0, w, 1, 0, 0, w, 1, w^2, 0, 1, w^2, w, w, 0, 1, w^2, 0, w^2, w, w, 0, w, 0, w^2, 1, w, 0, w, 1, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, w^2, 0, 1, 0, w, w, w^2, 0, 1, w^2, 0, 1, w^2, 1, w^2, w, 1, 0, 0, 1, 1, 1, w, 0, 0, w^2, 1, 0, w, 0, 1, w^2, w, 0, w^2, w^2, w^2, 0, 1, w, 0, 1, 0, 1, 1, w, 1, w^2, 1, w, w^2, 0, w^2, w^2, 0, w^2, 0, w^2, w, 1, 1, w, 0, w, w^2, 0, 0, 0, 1, w, w, w^2, w^2, w, 0, w, w, 1, w, w, w, w, 0, w, 1, w, w^2, w^2, 0, w, 1, 1, w, 1, 0, 1, 0, w^2, w^2, 1, w, w, 1, 1, 1, w^2, w^2, w, w, 0, 1, w, w^2, w, 1, 0, w^2, w, 0, 0, 0, w, 1, w^2, w, 1, w, 1, 1, w^2, 1, 0, 1, w^2, 0, w, 0, 0, w, 0, 0, w^2, 1, 1, w^2, w, w^2, 0, w, w, 1, w^2, 0, 0, w^2, w, w^2, w^2, 1, w^2, w^2, w^2, w^2, w, w^2, 1, w^2, 0, 0, w, w^2, 1, 1, w, w^2, 1, w, 1, w, 0, 0, 1, w^2, w^2, 1, 1, 0, 0, w^2, w^2, w, 1, w^2, 0, w^2, 1, w, 0, w^2, w, w, w, w^2, 0, w^2, 1, w^2, 1, 1, 1, w, 1, 0, w, w^2, w, w^2, w, w^2, w, 0, 1, 1, 0, w^2, 0, w, w^2, w^2, w^2, 1, 0, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 1, w, 0, w, 0, w^2, w, 0, 0, w, w^2, 0, 0, 0, 0, w, 0, w^2, w^2, 0, 1, w^2, 0, w, w, w^2, w^2, w^2, 1, w, 1, 1, w^2, w, 1, w^2, 1, 1, 1, w, w, 0, 1, w, 1, w^2, w, 1, 1, 0, w^2, 1, 0, w^2, w^2, 1, w, w^2, 0, 1, w, w^2, w, w, 1, 1, 0, 1, w^2, w, 0, w^2, w, w, 0, w, w, 1, 1, w^2, 0, 0, 1, 1, w^2, 0, 1, w, 0, w^2, 1, w, 0, w^2, 0, 0, w, w, w, 1, w^2, w, 1, 0, 0, w, w, w^2, w, w, w, 0, w^2, w, w, w, w, 0, 0, 0, 1, w, 1, w, 1, 0, 1, 1, 0, w^2, 0, w^2, w, w^2, 0, 1, 1, 0, 1, w^2, 0, 0, 0, 0, w^2, 1, 0, 0, 1, w, 0, 0, w, w^2, 1, w^2, 0, 0, w^2, w, 1, w, w, w, 1, 1, 0, w^2, w^2, 0, 1, w, 0, 0, 1, 1, w, w, 0, w^2, w, w^2, w, w^2, w^2, 1, 0, 1, w^2, w, w^2, w^2, 1, 0, w, 1, 1, w^2, 0, w^2, 1, w, 1, w, 1, w, w, 1, w^2, 0, 0, 1, 1, 1, w, 1, 0, 0, 1, 1, w, w^2, 0, w, 1, 0, w^2, w, 0, 1, 1, w, w ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, w, 1, w, w, w^2, w^2, w^2, 1, w, w^2, w, 1, w, w^2, 1, w^2, w, w^2, 0, w, 1, 1, 1, w^2, w^2, 0, 1, 1, 0, 1, 1, w^2, 0, 1, 0, w, w^2, 0, w, w, 0, w, w, w, w^2, w, w, w^2, w, 0, 1, 0, w^2, 1, w^2, w^2, w, 1, 0, 1, w^2, 1, w^2, w, 1, w, 0, w, 1, w, 1, 0, 1, w^2, w, w^2, 1, w^2, 0, w^2, 1, w^2, w^2, 1, 1, w^2, w^2, 1, w, 0, 0, w, 1, 0, 1, 1, 0, 1, w, w^2, w^2, w^2, w, 1, 0, w, w^2, w, 1, 0, w, 1, w, w^2, 1, w^2, w^2, 0, w, w, w^2, 0, 1, w, 0, 0, w^2, w^2, w, w^2, 0, 1, w, w, 0, 1, w, w^2, w, 0, 1, w, w^2, 0, w, 1, w, w, 1, w^2, w, w^2, 1, 1, 0, 1, 0, w, 1, w^2, 0, 0, w^2, w, w^2, 0, w, w^2, 1, w^2, 0, w, 1, w, 0, w, 0, w, 0, w^2, w, w, 0, w^2, w^2, w, 0, 1, w, 1, w^2, 0, w^2, 1, 1, w^2, w^2, 0, w, 1, w^2, w^2, 0, w^2, w^2, 1, w, w, w, 1, 1, w^2, 1, w, w, 1, 1, w, 1, w^2, 1, 1, 0, 0, 1, w^2, w^2, w^2, w, 0, 1 ]
[ 0, 0, 0, 0, 0, 1, 0, 1, w^2, w^2, 1, 1, w^2, w, 0, w^2, 0, 1, w, w, 1, 0, 0, 1, w^2, 0, w, w^2, w, w^2, 1, w^2, w, w^2, 1, 1, 1, 0, 0, 1, 1, w, 0, w^2, w, w^2, 0, 0, w, w, w, w, 0, w, w^2, 0, w^2, w, 0, 0, 1, 0, w, 0, 0, 0, 1, w, w, 1, 1, w, 1, w, 0, 1, w^2, 0, 0, w^2, 0, w, w^2, w^2, 1, w^2, 0, 1, w, 0, 0, w, w, w, 0, 0, 0, w, 1, 0, 1, w^2, 1, w^2, w^2, 0, w, w^2, w, 0, w, w, 1, 0, 0, w, w^2, 0, 0, 1, w^2, 1, 1, 1, w, 1, w^2, 1, 0, 1, 0, w, w^2, w, w^2, 1, 1, 0, 0, 1, w, w, w^2, 1, 0, 0, w^2, w^2, w, w^2, 0, 0, 1, w, 1, 0, 1, 0, w, w, 1, w, 1, w^2, w^2, 1, w^2, 0, 0, w, 1, w^2, 1, w^2, w^2, w^2, w, 0, 0, w, 1, 1, w^2, 1, 0, w^2, 1, 0, w^2, 0, w, 1, 0, w, w, 1, 1, 1, w^2, 1, 0, w, 1, 1, 0, w^2, w^2, w^2, w, w, 0, w, 1, 0, 1, w^2, w, w^2, 1, 1, 0, w^2, 1, 0, 1, w, w^2, w, w, w, w, 0, w^2, w^2, 1, 0, 1, 1, 1, w ]
[ 0, 0, 0, 0, 0, 0, 1, 1, 0, w^2, 0, 1, 0, w^2, 1, w^2, 0, 0, 1, w^2, 1, 0, w, w, w^2, 0, 0, w, 1, w^2, w, w^2, 0, w, 1, 0, 1, 0, 0, 0, 1, 0, w, w, 1, w^2, 0, 0, 0, w, 0, w, 0, 0, w, 1, 1, w, 0, 0, 0, 1, 1, w^2, w^2, w^2, w^2, w, 0, w, w^2, w, 0, 1, w^2, w^2, w, 1, 1, 1, w, w, 0, w^2, 0, 1, w, w, w^2, 1, 1, 1, w^2, 1, w^2, w^2, w^2, w^2, 1, 1, 1, 0, w^2, w, 1, w, w, 0, w^2, 1, 1, w^2, 1, 0, 0, 0, w, 1, 1, 1, 0, w^2, w, w^2, w, 0, 1, w, w^2, w^2, w, w, 0, w^2, 1, w, w^2, w, w, w, w^2, 1, w^2, 0, 1, 1, 1, 0, w^2, 1, w, w, w, w^2, 1, 0, w, w^2, 1, w^2, 1, 0, w, w^2, 0, w^2, w, 1, 1, 1, w^2, w, 1, 0, w^2, 0, w^2, 1, 1, 1, w^2, w, w^2, 0, 1, 1, w, w^2, w^2, 0, 0, 0, 1, 1, w^2, 1, 0, 1, 0, w^2, w, w, 0, 1, 0, 0, w^2, 0, w^2, 1, 1, 1, w^2, w, w, w^2, 1, w^2, 0, 1, 0, 0, w, w^2, w^2, w, 0, w^2, 1, w^2, 1, w^2, w^2, 0, w^2, w, w, w^2, w, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2002-10-15
Lb(240,7) = 172 is found by truncation of: Lb(256,7) = 188 XBC Ub(240,7) = 176 follows by a one-step Griesmer bound from: Ub(63,6) = 44 follows by a one-step Griesmer bound from: Ub(18,5) = 10 Liz
XBC: Extended BCH code.
| Notes
 |