Bounds on the minimum distance of linear codes
Bounds on linear codes [24,7] over GF(4)
| lower bound: | 13 | 
| upper bound: | 13 | 
Construction
Construction type: GB4
Construction of a linear code [24,7,13] over GF(4):
[1]:  [24, 7, 13] Quasicyclic of degree 3 Linear Code over GF(2^2)
     QuasiCyclicCode of length 24 with generating polynomials: x^6 + x^5 + w*x^4 + x^3 + w^2*x^2 + w*x + w,  x^4 + x^3 + x^2 + w*x + w^2,  x^2 + w*x + w^2
last modified: 2008-05-17
From Brouwer's table (as of 2007-02-13)
Lb(24,7) = 13 GB4
Ub(24,7) = 13 is found by considering shortening to:
Ub(23,6) = 13 BGV
 References 
 BGV: 
Iliya Bouyukliev, Markus Grassl & Zlatko Varbanov, New bounds for 
n4(k;d) and classification of some optimal codes over GF(4), Discrete
Mathematics 281 (2004) 43-66.
 GB4: 
T. A. Gulliver & V. K. Bhargava, New good rate $(m-1)/pm$ ternary and 
quaternary cyclic codes, Des. Codes Cryptogr. 7 (1996) 223-233.
| Notes
All codes establishing the lower bounds were constructed using 
     MAGMA.
Upper bounds are taken from the tables of Andries E. Brouwer, with the exception of codes over GF(7) with n>50.  
For most of these codes, the upper bounds are rather weak.  
Upper bounds for codes over GF(7) with small dimension have been provided by Rumen Daskalov.
Special thanks to John Cannon for his support in this project.
A prototype version of MAGMA's code database  over GF(2) was
written by Tat Chan in 1999 and extended later that year by 
Damien Fisher. The current release version was 
developed by Greg White over the period 2001-2006.
Thanks also to Allan Steel for his MAGMA support.
My apologies to all authors that have contributed codes to this table for not giving specific credits.
If you have found any code improving the bounds or some errors, please send me an e-mail:codes [at] codetables.de
 | 
Homepage | 
New Query | 
Contact
This page is maintained by 
Markus Grassl
 (codes@codetables.de).
Last change: 30.12.2011