| lower bound: | 139 |
| upper bound: | 143 |
Construction of a linear code [196,7,139] over GF(4):
[1]: [197, 7, 140] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, w^2, 0, w, w, 1, w^2, w^2, 0, 1, w, w, w^2, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, w, 0, w^2, 0, 0, 0, 1, 1, w^2, w^2, 1, 1, 1, w, 0, w, 0, w^2, w^2, 0, w^2, 0, 1, 0, w^2, 1, w^2, w^2, w^2, 1, 0, w^2, w, 1, 0, w, w, w^2, w^2, w, w, 0, w^2, 0, 1, w, w, w^2, w, 1, w, w, 1, w, 0, 1, w^2, 1, w, w, w^2, 0, w, 0, w^2, w^2, w^2, w, w, w, w, 0, 1, w^2, w^2, 0, 1, 0, 0, 1, 0, 1, w, w^2, 1, 0, 0, 0, 0, w, w, 0, w, w^2, 1, w^2, 1, 0, w^2, w, w^2, 0, 1, w, 0, w^2, 1, 0, 1, w, w^2, w, w^2, w^2, w^2, w^2, 0, w, w^2, 1, 1, w^2, 0, 0, w, 0, w, 1, w, 0, 1, 1, w, w, 1, w, w, 1, 0, w^2, w, 1, 1, w, 1, w, w, w^2, w, 0, 0, 1, 0, w, w^2, 0, w, 0, w, 0, 1, w, 0, w, w^2, w, w ]
[ 0, 1, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, w^2, 0, 1, w, 0, 0, w, w^2, w^2, 1, 0, w^2, 1, 1, 0, 0, 1, w, w^2, w^2, w, w, 1, w^2, 0, w^2, w, 1, w, 1, w, 1, 1, w^2, w^2, w^2, 0, 0, 0, w, 1, w^2, w, w^2, 0, 0, 1, w, w, w^2, w, w, 1, 0, w, w^2, w^2, w, 1, w, w^2, w^2, w, 1, 1, w^2, w^2, 1, 0, 0, w, w^2, w^2, w, 1, 1, 0, w, w, 0, 0, w, w, 0, w^2, w, 0, 1, 0, 1, w^2, 0, w, 0, 1, w, 1, 1, w^2, w^2, w, 1, w, w^2, 1, w^2, w, w, 0, w, 0, w, w^2, w^2, 1, 1, w, 0, 1, w^2, w^2, w, w, 0, 1, 0, 1, 0, w^2, w^2, 1, 1, 0, 1, 1, w^2, w, w, w, 1, w^2, w^2, w^2, 1, 1, 0, w, 1, 0, 0, 1, w, 1, 1, 0, w^2, w^2, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, 1, 0, w^2, 0, w, 1, 1, 1, w^2, 1, 0, w, 0, w^2, w^2, 1, 1, 0, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, w, w, 1, 0, w^2, 0, w, w, 0, w, 0, w, w, w^2, w^2, 1, 0, 0, w^2, w, 0, 0, w^2, 1, 0, w, w^2, w^2, 1, w, w^2, w^2, 0, w, 0, 1, 1, w^2, 1, 1, 1, w, w^2, 1, w, 0, w, w, 1, 0, w^2, w^2, w^2, 0, w, 0, 0, 1, w^2, 1, 1, 1, w^2, w^2, w^2, 0, 1, w^2, w, 0, 1, w^2, w^2, w^2, 0, w, w^2, w^2, 1, 1, 0, w^2, w, 1, 0, 1, w, w^2, w^2, w^2, w, 0, w^2, 0, w^2, 0, 0, w, w^2, w^2, 1, 0, w^2, 0, w, 1, w^2, w, w^2, 0, 1, 0, 1, 0, w, 1, w, 0, w^2, 1, 1, w, 1, 0, w^2, 0, w, w^2, 1, 0, 1, 1, 1, 1, w, w^2, w^2, w, w^2, w^2, 0, w^2, 1, 1, w^2, 1, 0, w, w, w^2, w^2, 0, w, w^2, w, w, 1, w, w, w, 0, 0, 0, w, w, 0, w^2, 1, 0, 0, w, w^2, 1, 1, w, 0, 0, w, w^2, 1, 1, 0, 1, 0, 1, 1, 1, w, w, w ]
[ 0, 0, 0, 1, 0, 0, 0, 1, w^2, w, w^2, w^2, w^2, 0, 0, w^2, w, w, 0, 1, w^2, w, 1, 0, 1, 0, w^2, w, 0, w^2, w, w^2, w^2, w, w^2, w^2, 1, w^2, 0, 1, 0, 0, w^2, 1, w^2, 0, w, w, 1, w, 1, 1, 0, w^2, w, w, 1, 1, w^2, 1, 0, w, w, 1, 0, w^2, 1, w, w, w, 0, 0, w^2, 0, 0, 0, w^2, 1, 1, 0, 0, w, 1, w, 0, w^2, w, 1, 1, 0, w^2, w, w^2, 1, w^2, 1, w, 1, 0, 0, 0, w^2, 1, 1, w, 1, 0, w^2, w, w, w, 0, w^2, 1, w, 1, 1, 1, 1, w^2, 1, 0, w, 1, 1, w, w, 0, 1, w, w^2, 0, w^2, 1, 0, 1, w, w^2, 1, 1, 1, 0, w^2, 1, w, 1, w, w^2, 1, 0, w^2, w, 1, 0, 1, 0, w, 1, w^2, w, 0, w^2, w, 0, 1, 0, 0, 1, w^2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, w, 0, w^2, w^2, 0, w, w^2, w^2, 0, w^2, 0, w^2, w^2, 0, 0, w^2, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, w^2, w^2, 1, 0, w, 1, w, 1, 0, w^2, w, w, 0, 1, w^2, w^2, w, 1, w, w^2, w^2, 0, 1, w^2, w^2, 1, w^2, 0, w, 0, 1, 0, w^2, 0, 1, 0, w, w, w^2, 0, w^2, w, 1, 0, 1, w^2, w^2, w, 0, 0, w^2, 0, 1, w, 0, 1, 1, 1, w, 1, w^2, 0, w^2, w^2, w^2, 0, w^2, 1, 0, 0, 1, w^2, w, 0, 0, w^2, 0, 1, w, 0, w, 0, w, w, w^2, 0, 0, w^2, 0, w, w^2, 0, 0, 0, 1, 1, 1, 0, 0, w, 0, 1, w^2, w^2, w, w^2, w^2, 1, 0, 1, 0, 0, w, 0, w^2, w, w^2, w^2, w, w^2, 1, 1, 0, 1, w^2, w, w, 0, 1, 1, w^2, 0, w^2, 0, 1, 1, 1, 0, w^2, 1, w^2, w, w, 1, w^2, w, w, w^2, w, w^2, w^2, w, w^2, 0, w^2, w^2, w, w, w, 1, w, 1, w^2, 1, 0, w^2, w^2, w, w^2, w^2, 1, 1, w^2, 1, w^2, 0, w^2, w^2, 1, w, 0, 0, 0, 1, 0, 1, w^2, 1, 0, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, w^2, 0, w^2, w, 1, w^2, 0, w, 1, 1, 0, w, w, 1, w^2, 0, 0, 1, w^2, w^2, 1, 0, w^2, 1, 0, 1, w, 1, 1, 0, 0, 1, 0, w, 1, w, w^2, 0, 0, 0, 0, 1, w, w^2, w, w, w, 1, w^2, 1, 1, 0, w, w^2, 1, w^2, w^2, w, 0, 1, w, w, 1, w, 0, w^2, 1, 1, 1, 0, w, 0, 1, 0, 1, w, w, w, w^2, 1, w, w, 1, w^2, 1, 1, w^2, w^2, w, w^2, w, w, w^2, 1, w^2, 0, w^2, w^2, 1, w, w^2, w, 1, 0, w, w, w^2, w, w, 1, 0, w, w, 1, 0, w, 1, 1, w, 0, 0, 0, w^2, 1, 1, w, w^2, w, w^2, 0, w^2, 1, w, 1, 0, w^2, w, 0, 0, 0, w, 1, 0, 0, w, 1, 1, 1, w, 0, w, 1, w^2, 1, 1, w^2, 1, w, w^2, 1, 0, 0, w, w, 0, w^2, 1, w^2, w^2, 1, w^2, w^2, 0, w^2, w, 0, w, 0, w^2, 1, 0, 1, 1, 0, w, w^2, 1, w, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, w, w^2, w^2, w, w^2, w^2, w, 1, w, w, 0, w, 0, 0, w^2, w^2, 1, 0, 1, w^2, 1, w^2, w, w, 1, 0, 0, w, 1, 0, 0, w, w^2, 1, w^2, 0, w^2, w^2, 0, w^2, w^2, w, w, w, 0, 0, w, w, 0, w^2, 1, w, 1, 1, w, w, w, w^2, 1, 0, w^2, w^2, 0, w, w, w^2, 1, 1, 0, w^2, w^2, w^2, 1, 0, 0, w^2, w, 0, 0, 1, w^2, w, 1, w^2, 0, w, 1, w^2, 0, 0, w^2, w, 0, w^2, 0, w^2, w, 1, 0, w^2, w^2, w^2, w, 1, 0, 1, w, w^2, 1, 1, w^2, 1, 1, w^2, 0, w, w^2, 1, w, 0, 0, w, 1, w^2, 1, 0, w^2, w, 1, 1, 0, 0, 0, 0, w^2, w, 1, w, 0, 0, w, w^2, 1, 1, w^2, w^2, w^2, 1, w, 0, w, 1, 0, w^2, 1, w, 1, 1, 0, w^2, 0, 0, w, 1, 1, w^2, 0, 1, w^2, w^2, w^2, w, w, 1, 0, 1, w^2, w, w, 1, 0, 0, 0, w^2, w^2, w^2, w, w, w ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [196, 7, 139] Linear Code over GF(2^2)
Puncturing of [1] at { 197 }
last modified: 2010-11-14
Lb(196,7) = 137 is found by truncation of: Lb(201,7) = 142 Koh Ub(196,7) = 143 is found by considering lengthening to: Ub(197,7) = 143 DM3
Koh: Axel Kohnert, email, 2006.
Notes
|