| lower bound: | 130 |
| upper bound: | 133 |
Construction of a linear code [184,7,130] over GF(4):
[1]: [186, 7, 132] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 1, 0, 0, w^2, w^2, w, w^2, w, w, 1, w^2, 0, 0, w^2, w, 0, 0, w^2, 0, 1, w^2, w^2, 0, 1, w, 1, 1, w, 1, w, 1, w^2, w, w^2, 1, 1, w, 0, 0, 1, 0, 0, w^2, 1, w^2, 0, 1, 0, w^2, w, w, w, w, w^2, w^2, w^2, w, 1, 0, 0, w^2, w, w, w, 1, 0, 0, w^2, w^2, 1, w, 0, w, w, w^2, 1, 1, 0, w, 1, 0, 1, w^2, w^2, 0, 0, w, 1, w, 0, 1, 0, 1, w, w, w^2, w, w^2, w, w, 1, 0, 1, 1, w^2, w, 1, w, w, 1, 1, w^2, 1, w^2, w, w, w, w^2, 0, w^2, w^2, w^2, w, 0, w^2, w, w^2, 0, w, 0, 0, 1, w^2, w^2, 0, 0, 0, w, 1, w, 0, w, 1, 0, w^2, 1, w^2, w^2, 0, 0, 1, w, 0, w^2, 0, w^2, w, 0, w, 1, w, 1, w, 0, 1, w^2, w^2, 0, 0, w^2, 0, w, w, 0, w^2, 1, w^2, 1, w^2, 1, 1 ]
[ 0, 1, 0, 0, 0, w^2, 0, 0, w, w, w, 0, w, 0, 1, 1, 1, 1, w, w, w^2, 1, w^2, w^2, 0, 1, w, 0, 1, 1, w, 0, 1, w^2, 0, 1, w, w, 1, w, w, 0, 0, 1, 1, w^2, 0, w, 0, 1, w, 1, w, w, w^2, 0, w, 0, w, w^2, 1, 0, w^2, 1, 0, 0, 0, 0, 1, 1, w^2, 0, w^2, w, w^2, w, 0, w, w^2, 1, 0, w, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, w^2, w, 1, 0, 1, w, w^2, 0, 1, 1, w, w^2, w, 0, 1, 0, w, w, w^2, 0, w, 0, w^2, 1, w^2, w, w, 0, w, w, 1, 0, w^2, 1, w, w, w^2, 0, w, w^2, 1, w, 1, 0, w^2, w, w^2, 0, w, w^2, w, 0, w^2, 1, w^2, 0, 1, 1, 0, 1, 0, w, 1, 0, 1, w, w^2, 0, w, 0, 1, w, 0, 0, 0, 1, w, 1, 1, 0, w^2, w, w, w, 1, w^2, 0, 1, w^2, w^2, 1, 1, 1, w ]
[ 0, 0, 1, 0, 0, w^2, 0, 0, 0, w, w^2, 1, w, w^2, w^2, w, 1, w^2, 1, 1, 1, 0, 0, w, 1, w^2, 1, 0, w, w^2, w^2, w, w^2, w^2, 0, w^2, w, w, 0, w^2, 1, 0, w^2, 1, w^2, w, w, 1, 1, w^2, 0, w^2, 1, 0, w, w^2, 0, w, w^2, 1, w, w^2, 1, w^2, 1, 1, 0, w, w, 0, w^2, 1, w^2, w, 0, 1, w^2, w, w, 1, w^2, 1, w^2, 0, 0, 0, w^2, w^2, w^2, w^2, w, 0, w, w, w, w, 0, w, 1, 1, 0, w^2, w^2, w, w, w^2, 0, w^2, w^2, w^2, w^2, w, 0, w, 1, w^2, 1, 0, w^2, w^2, 0, 0, 0, 1, 1, w^2, w, 0, 0, 1, w, 0, 0, 1, w, 1, w^2, 0, 1, w, 0, w, 0, w^2, w, w^2, 1, 1, 1, w^2, 0, 0, 0, 0, 0, w, 1, 0, w^2, 0, 1, 1, 1, 1, w, 0, w^2, w, w, w, w, w^2, w^2, w, w, 1, w^2, w^2, w^2, w, w^2, 0, 1, 0, 0, 0 ]
[ 0, 0, 0, 1, 0, w^2, 0, 0, 1, w^2, w^2, w^2, w^2, 1, w^2, 0, 0, w, 1, 0, w, w^2, w^2, 1, 1, 0, w, w^2, 0, 0, w^2, 1, w^2, 0, w^2, 1, w, w^2, w, 0, 1, 0, w^2, 0, 1, 1, 0, 0, 0, 0, 1, w, w, w, w^2, 1, w, w^2, w, w^2, 1, w, w, 1, w, 1, w^2, w^2, 0, 0, w, 1, 0, 1, 0, w^2, 1, w^2, w^2, w^2, w^2, 1, 1, 0, 1, 0, w, 0, w, 0, 0, 0, w^2, 0, w, 0, 1, 1, w, 0, 1, w^2, w, 1, 1, 1, w, w, w, 0, w, w^2, w, w, w, 1, w^2, w, 1, w, 1, w^2, w, w^2, w, w^2, 1, 1, w, 0, 0, w^2, 1, w, w, w, w^2, 1, 0, 1, w^2, 0, w, 0, 1, 0, w, 1, w, 1, 0, 1, w, 0, w, w, 1, 0, 1, 0, 0, 0, 0, w^2, w^2, 0, w^2, 0, w^2, 0, 1, 0, w, 1, w^2, 1, w^2, 0, w^2, 0, w^2, w, 1, w^2, 0, 1 ]
[ 0, 0, 0, 0, 1, 1, 0, 0, 1, w, 1, w, 0, 0, w, w, w, 0, w, 1, 1, 1, w^2, 1, w^2, 1, 1, w^2, 0, 1, w^2, 0, 0, 1, w, w, 0, 1, w^2, 1, w^2, 0, 1, 1, w^2, w^2, 1, w, w^2, 0, w^2, 0, 0, w, 0, w^2, w, 1, w, 1, 1, 1, w, 1, w, w, w, w, w^2, 1, w, 1, 1, w^2, w, w, 1, w^2, w^2, 1, 1, 1, 0, 1, w^2, 0, 0, 0, w^2, w, w^2, w, 1, 0, 1, 1, 0, 1, 0, w^2, w, 0, 1, 0, 1, w, 1, w^2, 1, w^2, 0, 1, w, w, 1, w, 1, w^2, w, w, w^2, 0, 1, w^2, 0, 1, w^2, w^2, 0, 1, 0, 1, w^2, 1, 1, w, 1, w^2, 1, 1, 0, w^2, 0, 0, w, 0, w^2, 1, 1, 1, w, 0, 0, w^2, w^2, w, 1, 1, 0, w^2, w^2, 0, 0, w^2, 0, 0, 0, 1, w, w^2, 1, 0, w, 0, w, w, w, 1, 1, w^2, w^2, w, w^2, w^2, w, w ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, w^2, w^2, w, 1, 1, 0, w^2, 1, 0, w, 0, w, 0, w, w^2, w, 0, w, 0, 1, 1, 1, 1, w^2, 0, 1, 1, w, w^2, 0, 1, w^2, w, w^2, w, w, 1, 1, 0, w, w^2, 0, 1, w, w^2, w^2, w^2, w^2, 0, 0, w^2, 1, 0, w, 0, w, 1, 1, w^2, w^2, 1, w, 1, w^2, 1, w, 1, w^2, w, w^2, w^2, w^2, 0, w^2, 0, w, w^2, 1, 1, w, w^2, 0, w, w^2, 0, w, 1, 0, 1, 0, 1, w, w^2, 0, 1, 0, w^2, 0, w, w, 0, 1, 1, w^2, w^2, 0, 1, w^2, w, 0, w, 1, 1, w^2, w, 0, 0, 0, 0, w, 1, 1, 1, 1, w, w^2, w^2, 0, w, w^2, w^2, 1, w, w^2, w^2, 1, w, w^2, 1, 0, w^2, w^2, 0, 0, w, w, w^2, 0, w^2, w, w^2, 0, 0, 1, 1, 0, w, 0, 0, w, w, 1, 1, 1, w, w^2, w, w, 1, w^2, 0, w^2, 0, w^2, 1, w ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 1, w^2, w^2, w, w, w, w, 0, 0, 0, w, w, w, 1, 1, 1, 1, 1, w^2, w^2, w^2, w, w, w, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, w, w, w, w, w, w, w, w, 0, 0, 0, w^2, w^2, w^2, w^2, w, w, w, w, 0, 0, 0, 0, 0, 1, 1, w^2, w^2, w^2, w^2, w, w, w, w, w, w, 0, 1, 1, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w, w, w, w, w, 0, 0, 0, 1, w^2, w^2, w^2, w^2, w^2, w, w, w, 0, 0, w, w, w, 0, 0, 0, 0, 0, 1, w^2, w^2, w^2, w, 0, w, w, w, 0, 0, 1, w^2, w^2, w^2, w, w, w, w, w, w, w, w, w, 0, 1, 1, 1, 1, w^2, w^2, w^2, w^2, w, w, 0, w^2, w^2, w, w, 0, w, 0, 0, 0, 0, 0, 0, 1, 1, 1, w^2, w, w, w, 0, w, w, w, 0, 0, 1, 1, 1, w^2, w, w, w, w, w, 0 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [184, 7, 130] Linear Code over GF(2^2)
Puncturing of [1] at { 185 .. 186 }
last modified: 2010-11-14
Lb(184,7) = 128 is found by truncation of: Lb(192,7) = 136 GW2 Ub(184,7) = 133 DM3
GW2: M. Grassl & G. White, New Codes from Chains of Quasi-cyclic Codes, ISIT 2005.
Notes
|