| lower bound: | 117 |
| upper bound: | 119 |
Construction of a linear code [183,7,117] over GF(3):
[1]: [182, 7, 117] Quasicyclic of degree 26 Linear Code over GF(3)
QuasiCyclicCode of length 182 with generating polynomials: 2*x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, 2*x^5 + x^4 + 2*x^3 + x^2 + x + 1, x^5 + 2*x^4 + 2*x^3 + x^2 + 1, 2*x^6 + 2*x^5 + x^4 + x^3 + x^2 + x + 1, x^5 + 2*x^4 + 2*x^3 + x^2 + 2*x + 1, x + 1, 2*x^5 + x^4 + 2*x^3 + x^2 + 2*x + 1, x^5 + 2*x^4 + x^2 + x + 1, 2*x^5 + x^4 + 2*x^3 + 2*x^2 + 2*x + 1, 2*x^5 + x^4 + x^3 + 2*x^2 + 1, x^4 + 2*x^3 + x^2 + 2*x + 1, x^5 + x^4 + 2*x^3 + 2*x^2 + 1, x^2 + x + 1, 2*x^4 + x^3 + x^2 + 2*x + 1, x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 1, 2*x^4 + 2*x^3 + 2*x + 1, x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1, x^4 + x^2 + 1, x^4 + 2*x^3 + x^2 + 1, x^5 + x^4 + x^3 + 2*x^2 + x + 1, x^4 + 2*x^2 + x + 1, 2*x^6 + 2*x^5 + 2*x^4 + x^3 + x^2 + x + 1, 2*x^4 + 2*x^3 + x^2 + x + 1, 2*x^5 + x^4 + 2*x^3 + 2*x^2 + x + 1, 2*x^5 + 2*x^4 + x^3 + 2*x^2 + 2*x + 1, 2*x^5 + 2*x^4 + 2*x^3 + x^2 + x + 1
[2]: [183, 7, 117] Linear Code over GF(3)
PadCode [1] by 1
last modified: 2001-12-17
Lb(183,7) = 117 is found by lengthening of: Lb(182,7) = 117 GO Ub(183,7) = 119 follows by a one-step Griesmer bound from: Ub(63,6) = 39 follows by a one-step Griesmer bound from: Ub(23,5) = 13 is found by considering shortening to: Ub(22,4) = 13 is found by considering truncation to: Ub(21,4) = 12 HN
HN: R. Hill & D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992), 137-157.
Notes
|