| lower bound: | 120 | 
| upper bound: | 124 | 
Construction of a linear code [172,7,120] over GF(4):
[1]:  [172, 7, 120] Linear Code over GF(2^2)
     Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, w^2, 0, w^2, 1, w^2, 0, 1, w, w^2, w^2, 1, w^2, w^2, 1, w, 0, 1, 0, w^2, 1, 0, w, 0, 0, 1, 0, w, 0, w^2, w, w^2, 1, w, w, w^2, 0, 0, 1, 1, 1, 0, w, w^2, 0, w, 1, 0, 0, w, 1, w, 1, 0, w, w^2, w, 0, w^2, 1, 1, 0, w, 1, w, 0, w, 1, 0, w^2, 0, 1, w, w^2, 1, w^2, 1, 1, w, w, w^2, w^2, w^2, 0, w^2, 1, w, w, 0, 0, w^2, w, w^2, 1, w^2, 0, w^2, 1, 0, w^2, w, 0, 0, 0, 1, 0, w, w^2, 1, w, 0, 1, w, 1, 1, 1, 1, 1, w^2, w^2, 1, w, w, w^2, 1, 0, 1, 1, w, 0, w^2, 0, 0, 1, 0, w, w^2, w^2, w^2, 1, w^2, 0, 0, 1, 0, 0, 0, w^2, w, w^2, 1, w^2, 1, 0, w, w^2, 1, 1, w^2, 1, 0, w^2, w, 0, 0, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, w, w^2, 0, 1, 1, w, w, w^2, 0, 1, 0, w, 0, 1, w, w, w^2, 0, w^2, w^2, w, 0, 1, w^2, 1, 1, w^2, w^2, 0, w^2, 0, 1, 0, w^2, w^2, 0, w, 0, 0, w, w^2, w^2, 0, w, 1, 1, w, 1, 0, w^2, 1, w, w, 1, 1, w^2, w^2, w, 0, 0, 1, w, 0, w, 1, w, w^2, 0, 0, 0, w, 1, w^2, 0, 1, w^2, 1, w, w^2, 1, 0, w, w, w, 0, 1, 0, 1, w^2, 1, 1, 1, 1, w, w^2, 1, 0, 1, 0, 1, w^2, 1, 0, 1, 1, w, w, w^2, 1, 0, w^2, w, w^2, 0, w^2, 1, 0, 0, w^2, w, w^2, 1, w^2, 0, 0, w^2, w, 0, 1, 0, 1, w^2, 0, w, 1, w^2, 0, w, w^2, w, w^2, w^2, w^2, 0, 1, 0, 0, w^2, 1, 0, 1, 1, 0, 1, 0, 1, 1, w^2, w^2, w^2, w, w^2, 0, 0, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 1, w, 0, 0, w, w, w^2, 0, 1, 1, w^2, 0, 0, w, 0, 1, w^2, w, w^2, 0, 0, w, 0, w^2, w^2, 1, w^2, w, 1, w, w^2, w, 1, 0, w, w, w, w, 0, 0, w^2, w^2, 1, 0, 0, w^2, w^2, w, 1, w, 1, 1, w^2, 0, w, w^2, 0, w^2, 0, 1, w^2, 1, w^2, w^2, w^2, 1, 1, w, w^2, 1, w, w, w^2, 1, 0, 0, 0, 0, 0, 1, w^2, w^2, w, 0, w, 0, w^2, w^2, 1, w^2, w, w^2, w^2, w, 0, w^2, w^2, w^2, 0, 1, w^2, w, 0, 0, w, 1, 0, w, w^2, w^2, 1, w, 0, w^2, 1, 1, 0, w^2, w^2, w, w^2, 0, 0, 0, w, 1, w^2, w^2, w, w^2, 0, 1, w^2, 0, w, w^2, w, w^2, w, 1, 0, w, 1, w, 0, w, w^2, 0, 0, 1, 0, w^2, w^2, w, 1, w, 0, 0, w^2, w^2, w, w, 0, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, 0, w^2, 1, w, 0, w^2, 1, 0, w^2, 0, w^2, w, 1, w, 0, 1, w, w, w^2, 0, 1, 0, 0, 1, 0, 1, 0, w^2, w, w^2, 1, 1, 1, w, 1, w, 0, w, 0, w^2, w^2, 1, w^2, w^2, w, 1, 1, w^2, w, w^2, w, w^2, w^2, 0, 0, w^2, 0, w, w, w, 0, 0, 0, w, 0, w, w, 1, w^2, 0, w^2, 1, w, 1, w, 0, w^2, w^2, w, w^2, w, 0, w^2, w^2, w^2, w, w^2, 0, 0, w, w, 1, w^2, w, w, 1, 0, 0, 1, w, 0, 0, w, 0, 1, w, w^2, w, 1, w^2, w, w, w^2, 1, 0, 0, w, w^2, 1, 0, 0, w^2, w, w, w, 0, 1, w^2, 0, w^2, w, 1, w^2, 0, 0, w, 0, w, 0, w, w^2, 1, 1, 1, w, 1, 1, w^2, w, w, 0, w, 1, w^2, 0, 1, w, 0, 1, 1, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 1, w^2, 0, 0, w, w^2, 1, 0, 1, w, 1, 0, 0, w^2, 0, 1, 1, w, 1, 0, 1, w^2, w, 0, 1, 1, w^2, 0, 1, w, w^2, w, w, 0, w, w^2, 0, 1, 1, 1, w, 0, 0, w^2, w^2, 0, w, 1, 0, 0, 0, w^2, w, 1, 1, 0, w, w, w, w^2, w, w^2, w, w, 0, 0, w^2, 1, w, w^2, 1, 0, w, w^2, w^2, 1, w, w^2, 0, 0, w, 1, w, w, 1, 0, w^2, 1, w, w^2, w, 1, 0, w^2, 0, w^2, w, 1, w, 1, w^2, w, 1, 0, 0, w, w, w, 1, 0, 1, w^2, 0, 1, w, w, 0, w, w^2, w, 0, 1, w, w^2, w, 0, 1, 0, 1, w, w, 0, 0, 1, 1, 0, 0, w, w^2, 1, w, 1, 0, w^2, w, w, 1, w^2, 1, 1, w, 0, 1, 0, 0, w, 1, w^2, 1, w, w, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, w, w^2, 1, 0, 1, w, 1, w^2, 0, 1, 0, 1, w, w^2, 1, 1, w, 0, w, w^2, 1, 0, 1, w, 1, w^2, w, w^2, 0, w^2, 0, 1, 0, 0, w, 0, w^2, w^2, w^2, w^2, 0, 0, w, w^2, w, 0, w^2, w, w^2, 1, w, 0, w^2, w, w, 1, 1, w^2, w, w^2, 0, 0, w, w^2, w, w^2, 0, w^2, 1, w^2, 0, w, 0, 1, 0, 1, w, 0, w, 1, 0, 0, w^2, 1, 0, 1, 1, 1, 1, w^2, 0, w^2, w^2, w, 0, 1, 0, w, 0, w^2, w, w, w, 1, 0, 1, w, w, 1, 0, w^2, 1, w, w, w, 1, 1, 0, w^2, w, w, w, 0, 1, w^2, 0, 0, 1, 0, w^2, 1, 1, w, 1, 1, w, w, 1, 0, 0, w, w, 1, w^2, 1, 1, w^2, 0, w, 1, 0, 1, w, w, 1, 0, 0, 1, 0, w^2, 0, w^2, 0, 0, 0 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-03-25
Lb(172,7) = 119 AAG Ub(172,7) = 124 DM3
DM3: R. N. Daskalov & E. Metodieva, Bounds on minimum length for quaternary linear codes in dimensions six and seven, Mathematics and Education in Mathematics, Sofia, (1994) 156-161.
| Notes
 |