| lower bound: | 118 | 
| upper bound: | 121 | 
Construction of a linear code [168,7,118] over GF(4):
[1]:  [170, 7, 120] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 1, 0, 0, 0, 0, 1, w, 1, w, 0, w, 0, 0, 0, w, 1, 0, 1, 1, 1, w, 0, w^2, w, 0, w, 0, 0, 1, w^2, w^2, w^2, 1, w, 1, 0, w, w^2, 1, 0, w^2, 1, w, w, 1, w^2, 0, w^2, 0, 1, 0, 0, w^2, 1, 0, w^2, w, 0, w^2, w^2, w, 0, w, 0, w^2, w, 1, 1, 0, w^2, w, 0, 1, w, 0, w^2, w^2, 1, w^2, 0, w^2, 0, 0, w, 1, 0, 1, w, 1, w, 1, w, w^2, 1, 0, w^2, 1, w^2, 0, w^2, 0, 0, 0, 1, 0, 1, w, w^2, w, 1, 1, 0, w, 1, w^2, 1, w, 0, w, 0, 0, 1, 1, w, 0, w, 0, 1, w^2, 1, w, 1, 1, 1, w^2, 1, 1, 0, w, w, w, 0, 1, 1, w^2, w^2, 0, w^2, w^2, w, w^2, w^2, 0, w, w, w^2, 0, w, w^2, w, 0, w, 1, w^2, 1, 1, w^2 ]
[ 0, 1, 0, w^2, 0, 0, 1, w^2, w^2, 0, 0, 1, w^2, 1, 0, 0, 0, w^2, w^2, w, w^2, 1, w, 1, 1, 1, 0, 1, w^2, 0, 0, 0, 0, w, w, w^2, 0, 1, w, w^2, w, 0, 0, 0, w, w^2, w^2, 0, w^2, w, 1, w, 1, w^2, w, 0, 0, 1, w, w, w, w^2, w^2, 1, 0, 1, w, w^2, 0, w, w, 0, w^2, 1, 1, w^2, 1, w^2, w^2, w, 0, 1, w^2, 1, 0, w, 0, w, 1, 1, 1, 1, 1, w, w^2, 1, w^2, 1, w^2, 0, 0, w, w, 0, 1, w^2, w, w^2, w, 0, 0, w^2, 1, 0, w^2, 1, w^2, 1, 0, 1, 1, 0, w, 1, 0, w^2, w^2, w^2, 1, 0, w, 1, w^2, w, w^2, 0, 1, w^2, w, 0, 1, 1, w^2, w, w^2, 0, 1, w, 1, 1, 0, w, 0, w^2, 1, 1, 1, w^2, 1, w, 1, w, 0, w, 1, 0, 1, 0, w, 0 ]
[ 0, 0, 1, w^2, 0, 0, 1, w^2, 0, 0, w^2, 1, 0, 0, w^2, 0, 1, w, 1, 1, 0, 0, 0, w, w, 0, w, w, w^2, 0, 0, 0, 0, w^2, w^2, w, w, 1, 1, 0, 0, w, 1, 1, 0, 0, w^2, w^2, 1, 1, w^2, w, w, w^2, 1, 1, 1, w, w, 1, w, 1, w, w^2, 0, 1, 0, 0, 1, 0, w^2, 0, 1, w^2, w, w, w^2, w, 1, 0, w, w, w^2, 1, 0, w, w^2, 1, 0, 0, 1, 0, w^2, w, 0, w^2, 1, w^2, w, 0, 1, 0, 0, w, w, 0, w, 0, 1, 1, 0, 1, w^2, 1, w^2, w^2, w^2, w^2, 1, w, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, w^2, w^2, 1, 1, 1, 1, 1, w^2, w^2, w, w^2, 1, 0, 1, w^2, w^2, 1, w^2, 0, 1, w^2, w, 0, w, 0, 1, w, 1, 1, 0, 0, w^2, 1, w, 0, w, w, w^2, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 0, w, 0, w, 1, w, 1, 0, 0, 1, w, w^2, w, w, w, 1, w^2, 0, 1, w^2, 1, w^2, 0, 1, w^2, w^2, 0, w, 1, w, w^2, 1, 0, w, w^2, 0, w, w^2, 0, w^2, w, w, 1, 1, 0, w, 0, w, 0, 1, w, w, 1, 0, 1, 0, w, 0, 1, w^2, 0, w^2, 1, 1, 1, w^2, w, 1, w, w^2, 0, 0, w, 0, w^2, 0, w^2, w^2, 1, w, w^2, w, 1, w, w^2, 1, w, 1, 1, 1, w^2, 0, 1, 0, w, 0, w, w^2, w, w, 0, 0, w, w^2, 1, 1, 0, w, 1, w^2, w^2, 0, 1, w^2, 1, w, w^2, w^2, 0, 0, 0, w, w^2, w, 0, w^2, 1, 1, 1, 0, w, w, 1, 1, 1, 1, w, 1, 1, 1, w^2, w, 1, 1, w^2, 1, w^2, 1, 0, w^2, w, 1, w^2, 1, 0, w, w, 1, w, w^2, 0, w^2 ]
[ 0, 0, 0, 0, 0, 1, 1, 0, w^2, 1, w^2, 1, w^2, 0, w^2, 0, 1, w^2, 0, 1, 1, w^2, 0, 1, 1, w^2, 0, 1, w, w, 0, 0, 0, 1, w^2, w^2, 0, w, 1, 1, 0, 0, w^2, w^2, 0, w, w, 1, w, 0, 1, 0, w^2, w^2, w, 1, 1, w^2, 0, w, 1, 1, w^2, 1, w^2, w^2, w, w, w, 1, 0, 0, 1, w, 0, 1, w, w^2, 0, 0, 0, 1, w, w, w, w, 1, 1, w^2, w^2, w^2, w, w^2, 1, w, 1, w^2, w, 0, 0, w, w^2, w, w^2, 0, 0, w^2, 1, w^2, w, 0, w, w^2, 0, 1, w^2, 1, w^2, w, 0, 1, 0, w^2, w, w^2, 1, 1, w^2, w, w^2, 0, w, 0, w^2, w^2, 1, 0, 0, w^2, 1, w, 1, 1, 1, 0, w, w^2, 0, w^2, w, w, w, w, 0, w, 0, w, 0, 1, w^2, 1, 1, 0, 0, w, 1, w^2, 1, 1, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w, 1, 1, 1, w, w^2, 1, w^2, w, 1, 1, w^2, w^2, w, 0, w, w^2, 0, w, 0, 0, w^2, w, w^2, w^2, w^2, 1, w^2, 0, w^2, 0, 0, w^2, w, w^2, 0, 1, 0, w, 0, 1, w^2, w^2, 1, 1, w, 0, w^2, 0, 1, 1, 0, w^2, 0, w, w, 1, w, 0, 0, 1, 0, 0, 0, w, 0, 1, w^2, 1, w, 1, w^2, 1, w, 0, 1, 1, 0, 0, 0, 1, w, 1, w^2, 1, 1, w, w^2, 0, w^2, w, w^2, w, 1, 1, 1, w^2, 1, w, w, 1, 1, w, 1, 1, w^2, 0, 0, 0, 1, w^2, w, w^2, 1, 0, w, w, 1, 0, 1, w, w^2, w, w^2, w, 0, 1, 1, 0, w, w, 0, w, w, 0, 0, 1, w, w, w^2, 1, w^2, w^2, 1, 1, w^2, w^2, w^2, w, w, 1, w^2, 1, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w, w, w, 1, w, w, w, w, w^2, w^2, w, w^2, w^2, w^2, w, w^2, w^2, w^2, w, w, w^2, w^2, w, 1, w^2, w^2, w^2, w^2, 1, w^2, w, 1, w^2, w^2, w^2, 1, w, w^2, w^2, w, 1, w^2, 1, w^2, 1, w^2, w, w^2, 1, 1, w^2, w^2, w^2, 1, w, w^2, w^2, w^2, w, w^2, w^2, 1, w^2, w^2, 1, w^2, w, w^2, w, 1, w^2, w, w^2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w, w^2, w^2, w^2, 1, 1, 1, w, 0, 0, 0, 0, 0, w, 1, 1, 1, w^2, 1, 1, w, 1, w, w, w, w^2, w, 1, 1, w, 1, 1, w, w, 1, 1, 1, w^2, w^2, w, 1, w, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [168, 7, 118] Linear Code over GF(2^2)
     Puncturing of [1] at { 169 .. 170 }
last modified: 2008-08-11
Lb(168,7) = 117 is found by truncation of: Lb(169,7) = 118 DG5 Ub(168,7) = 121 DM3
DM3: R. N. Daskalov & E. Metodieva, Bounds on minimum length for quaternary linear codes in dimensions six and seven, Mathematics and Education in Mathematics, Sofia, (1994) 156-161.
| Notes
 |