| lower bound: | 112 | 
| upper bound: | 115 | 
Construction of a linear code [160,7,112] over GF(4):
[1]:  [160, 7, 112] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, w^2, w, 1, 0, 0, w, 0, 1, w^2, w^2, 1, 0, 0, w, 0, w, 0, 0, 0, w^2, 1, 1, w^2, 0, 0, w, 0, 0, 1, w, w, 1, 0, w^2, w, w^2, 1, 0, w^2, 1, w, 0, w^2, 0, 1, w, 0, w^2, 1, w, w, w, 1, 0, w^2, 0, w^2, 1, w^2, 0, 0, 0, 0, 1, w, 1, 1, 1, w^2, w, 0, w^2, 1, 1, 0, 1, w, 1, w^2, 1, 1, w, 0, 1, 0, 1, 1, w, w^2, w^2, w^2, 0, 1, w, 1, 0, w^2, 0, w, w, w^2, 1, w, w^2, 1, w, w^2, w^2, 0, 0, w^2, 0, 1, 0, w, 0, 1, 1, w^2, 1, w, 1, w^2, w^2, w, 1, w^2, 1, 1, w, 1, 0, w, 0, 1, w, 0, 1, 0, w, 0, 1, 0, w, w, 1, 1, w, 0, 0, w, 1, w^2, 0, 1, 1 ]
[ 0, 1, 0, 0, 0, 1, w^2, 0, 0, 1, w^2, 0, w, w, w^2, 0, 0, 0, 1, 0, w, w^2, 1, 0, 0, w^2, 0, 0, w, 1, 0, 0, w^2, w, w^2, w^2, w, w, 1, w, w, 1, 0, w, 0, w, 1, 1, 0, 0, 1, w^2, w, w, 0, w^2, 1, 0, w^2, w^2, w^2, w^2, 1, w^2, w, w, 1, w, 1, 1, w^2, w^2, w^2, w^2, 1, 1, 1, 0, 1, 1, 0, 0, w^2, 0, w^2, 0, 0, w^2, 0, 0, 1, w^2, 1, 0, 1, w, 0, w^2, w, w^2, 0, 1, w^2, 1, 0, w^2, 0, 0, w, 1, 0, w, 1, w, w, 1, w^2, 1, w^2, w, w^2, w^2, 0, w, 0, 0, 0, w, 0, 0, w^2, w^2, w, w, w^2, w^2, 0, 0, w, w, 1, 1, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 0, 1, 0, w^2, w^2, w, w, w, 1 ]
[ 0, 0, 1, 0, w^2, 0, 1, 0, 0, 0, 0, 0, 0, w^2, 1, 1, w^2, 0, 0, w, 0, 1, w, 0, 1, 0, w^2, w, w^2, w, 0, 0, w, w, 0, w, w^2, 1, w^2, 1, 0, w, 1, w^2, w, 0, w, 0, 1, w^2, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 0, w, w^2, 1, 1, 0, w^2, w^2, 0, 1, w^2, 1, w, w, w^2, 0, w^2, 1, 1, w^2, 0, 0, 1, w, w, 1, 0, w, w, 0, 0, w^2, w^2, w, w^2, w, 1, 0, w, w, 1, 0, w^2, 0, w, w, w^2, 0, w^2, 1, w^2, 0, 1, 1, w^2, w, w^2, w, 1, 0, w, 1, w, 1, 0, 1, w^2, w^2, w, 1, w^2, 1, 0, w^2, w, w^2, 0, w, 0, w^2, w^2, w, w, 0, w^2, w, w, 0, w^2, 0, w, 0, w^2, w, w^2, 0, 1, w^2, 0, 1 ]
[ 0, 0, 0, 1, w, 1, 0, 0, 0, 0, 0, 0, 0, w, 0, 0, w, 1, 1, 0, w, w^2, 0, w, w^2, w^2, 0, 1, 0, 1, w^2, 0, w, w, 1, w^2, w, 0, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, w^2, 1, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, w^2, 1, w^2, 1, 0, 1, w, w, 1, 1, w^2, 1, w, w, w^2, 1, w, 0, 0, w, 1, w, w^2, 0, 0, w^2, w, 1, 1, w^2, w^2, 0, 0, w, w^2, w, 0, 1, w^2, w^2, 0, 0, w^2, 0, w, w, w^2, 1, w, 0, w, 1, 0, w^2, 1, 0, 1, 0, w^2, w^2, 1, w, 1, w, w^2, 1, w^2, w, w^2, 0, w, 0, 0, w^2, w, w^2, 0, w, 1, w, w, w^2, w^2, 1, 1, 0, 0, w, 1, w, 1, w^2, 0, 1, 0, w^2, 0, w, 1, w ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, w^2, w^2, 0, 0, w^2, w^2, 0, 1, 1, 1, 0, w^2, 1, 0, w^2, w^2, 0, 1, 0, 1, w^2, 0, 1, 0, 1, w^2, w^2, 1, 1, 0, 1, 0, 1, 1, w, w, 0, w, w, 0, w^2, w, 1, w^2, w^2, w^2, 0, w, w^2, 1, 0, w^2, 0, 0, w^2, w, 0, w^2, 0, w, w, w, w, w, w, w, w, 0, 1, 1, 0, w, w^2, 1, w^2, w, 1, 0, w, w, w^2, 0, w^2, w, 1, 0, w, w^2, 0, 1, w^2, 0, w^2, 0, w, 0, 1, w^2, 0, 1, w^2, w^2, w, w^2, 0, 1, 1, w, 1, w, 0, w^2, 1, w, w, w^2, 0, w^2, w^2, w, w^2, 0, w^2, w, 1, w^2, 0, w^2, 1, 0, w, 0, 0, w^2, 0, w, 1, w, w^2, w, w^2, 1, 1, w, 1, 0, w, 0, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, w, w, 1, 1, w, w, 1, 0, 0, 0, 1, w, 0, 1, w, w, 1, 0, 1, 0, w, 0, 1, 0, 1, w^2, w^2, 1, 0, 1, 0, 1, 0, 0, w^2, w^2, 1, w^2, w^2, 1, w, w^2, 0, w, w, w, 1, w^2, w, 0, 1, w, 0, 0, w^2, w, 0, w^2, 0, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 0, 0, 1, w^2, w, 0, w, w^2, 0, 1, w^2, w^2, w, 1, w, w, 1, 0, w, w^2, 0, 1, w^2, 1, w, 1, w^2, 1, 0, w, 1, 0, w, w, w^2, w, 1, 0, 0, w^2, 0, w^2, 1, w, 0, w^2, w^2, w^2, 0, w^2, w^2, w, w^2, 0, w, w^2, 0, w, 1, w, 0, 1, w^2, 1, 1, w, 1, w^2, 0, w^2, w, w^2, w, 0, 0, w^2, 0, 1, w, 0, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w, 1, w^2, w^2, w^2, w^2, w, w, w, w, 1, 1, 1, 1, w^2, w^2, w^2, w^2, 1, w, w^2, w^2, w, 1, 1, w, w^2, w^2, 1, w, w^2, w, 1, w^2, w, 1, w, 1, w^2, w, w, w^2, 1, w, w, w^2, 1, 1, w^2, w^2, w, 1, w, w^2, 1, w^2, 1, 1, w, w^2, w, w^2, w^2, w^2, w^2, w^2, w, 1, w, w, w, 1, 1, w^2, w^2, w, w, 1, 1, w^2, w^2, 1, w^2, w^2, 1, w, w, 1, 1, w^2, w, w, w^2, w^2, w^2, w, 1, 1, w^2, w^2, 1, 1, w, w, w^2, w^2, 1, 1, w, w, w^2, w^2, w, w, w^2, w^2, 1, 1, w, w^2, w, w^2, 1, 1, w^2, 0, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2007-08-03
Lb(160,7) = 111 is found by truncation of: Lb(161,7) = 112 BKW Ub(160,7) = 115 DM3
DM3: R. N. Daskalov & E. Metodieva, Bounds on minimum length for quaternary linear codes in dimensions six and seven, Mathematics and Education in Mathematics, Sofia, (1994) 156-161.
| Notes
 |