| lower bound: | 109 | 
| upper bound: | 112 | 
Construction of a linear code [156,7,109] over GF(4):
[1]:  [159, 7, 112] Linear Code over GF(2^2)
     Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 1, 0, 0, 0, 0, 1, w^2, 1, w^2, 0, w^2, 0, 0, w, w, w^2, 0, 1, 1, w, 0, w, w^2, w^2, w^2, w, 1, 0, 0, w^2, 1, 0, w, w, 0, w, w^2, 0, w^2, w, w^2, w^2, w, w^2, 0, w^2, 0, 0, w, 0, 1, w^2, 0, w, 0, 0, w^2, 1, w, w, 0, w^2, 1, 0, w^2, 0, w, w, 1, w^2, w, 1, w^2, w, 1, w^2, 1, w^2, 1, 1, w, 0, 1, 0, w^2, 0, w, w^2, w, 0, 1, 1, w, 1, 1, w, 0, w^2, 1, w^2, 1, 1, w^2, w, w^2, 0, 0, 0, 0, 1, w^2, 1, 0, w, 1, 1, w, w^2, w, w, w^2, w^2, 1, w, 1, 1, w, 0, 0, 1, w, 0, 1, 0, 0, 1, 0, w, 0, 0, w^2, w^2, 1, 0, w^2, 1, w^2, w, w^2, w, 0, w^2, 1, w^2, 0, w ]
[ 0, 1, 0, w, 0, 0, 1, w, w, 0, 0, 1, w, 1, 0, 0, 0, w, w, w^2, w^2, 1, 1, 1, 1, 0, 1, w, 1, w, 0, w, w^2, w^2, w, 1, w^2, w, 0, w^2, 1, w, w, 1, w, 1, w, w, 1, 1, 1, 0, 1, 0, w, 1, 0, 1, w, 0, w^2, w^2, w^2, 1, 1, w, 1, w, 1, 0, w^2, w, 0, w^2, w^2, w^2, w^2, w, w^2, 1, 0, 1, 0, 1, w^2, w, w, w, w^2, 1, 0, w^2, 1, w^2, 1, w^2, w, 0, 0, 0, 1, 1, 0, w, 0, 0, 0, 0, w^2, w, 1, 1, 1, w, w, 0, w, 1, w^2, w^2, w, 1, 1, 0, w, 1, 0, w^2, 1, w, 1, 1, w, w^2, 0, w, w^2, w, w, w, 0, w, 0, w, w^2, 0, 0, w, w^2, 0, 0, w^2, 1, 1, 1, 1, 1, 1, 1 ]
[ 0, 0, 1, w, 0, 0, 1, w, 0, 0, w, 1, 0, 0, w, 0, w, w^2, w, w, w^2, 0, w^2, w, 0, 1, 0, w^2, 1, 1, 0, 1, w^2, 1, 1, w, 0, w, w, 0, w, w, w, 0, w^2, w^2, 1, 1, 1, w, w, 1, 0, 1, 1, w, 0, w^2, 0, 1, 1, w, w, 0, w, w^2, 1, 1, w, 1, w, 0, 0, w^2, 0, 0, 1, 0, 1, 1, w, 0, 1, 0, 0, 0, 0, w^2, 1, 1, w^2, w, w, w, 0, 1, w^2, 1, w, 0, 1, w^2, 0, 0, w^2, 1, 0, 0, 0, 1, w, w, 1, 0, w, w^2, w^2, w^2, 0, w^2, w^2, 1, w^2, w^2, w, w^2, w^2, w^2, 1, 1, 0, 0, w^2, 1, w^2, 0, 1, w, w, w^2, w^2, w^2, 1, 0, 0, 1, 0, w, 1, 1, 0, w, w^2, 1, w, 0, w, 1, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 0, w^2, 0, w^2, 1, w^2, 1, 0, w, w, w^2, w, w^2, w^2, 0, w, 0, 1, 1, 1, 0, w^2, 0, w, w, w^2, 1, 0, w^2, w, w^2, 1, w^2, 1, w, w^2, 0, w, w^2, 1, 0, w, 0, 1, w^2, w^2, w^2, w, w^2, 0, w^2, 0, 1, w, 0, w, 1, w, w^2, w^2, 0, 1, w, 1, w, 0, 1, w, 1, w^2, 1, w, w^2, w^2, w, 1, w, 1, w, w^2, w, 1, 0, 1, w^2, w, 1, w^2, 0, 1, 1, w^2, w, 1, 0, w, 0, w^2, 1, w, 1, 0, w^2, w, 0, 0, w^2, 1, 0, w^2, w^2, w, w, 1, 0, w, w, 0, w, 0, 1, 1, w^2, 1, 1, w, 1, 0, w^2, 0, w^2, 0, 1, w^2, 1, w^2, w, 1, 0, w, 1, 1, 0, 1, 1, w, w^2, 0, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 0, w, 1, w, 1, w, 0, w, 0, w, 1, 0, w, w^2, w, 1, 0, w, w, w, w, w^2, 0, 0, 1, 1, 0, w, 0, w^2, w^2, w, 0, 1, w^2, 1, 0, w^2, w, w^2, w, w^2, 1, w^2, w, w^2, w, w, 0, 0, w^2, 0, w^2, w, 1, w^2, w, 0, w^2, w, w, w, w^2, 0, w^2, 0, w^2, w, w, 1, 0, 1, w, w^2, w, w^2, w^2, 0, w^2, 1, 0, 1, w, 0, w, 0, w^2, 0, w, 1, 0, 0, w, 0, w^2, w, 0, w^2, 0, w, 1, w, w^2, 0, 1, 0, 0, w^2, w^2, w, 1, 0, 1, 1, w, 0, w, 1, w^2, w, 0, 1, 1, w^2, 1, 0, w^2, w^2, w, 0, 0, w^2, 0, 1, w^2, 1, w^2, w^2, 0, 1, 0, w^2, w, w^2, w, 0, w^2, w, 1, w, w^2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w, 1, 1, 1, 1, w^2, w^2, w, w, w^2, 1, w, 1, w, 0, 1, w^2, 1, w^2, 0, w, 0, w, 0, w^2, 0, 1, 1, w^2, w^2, w, 0, 0, w^2, 1, 1, w, 1, w^2, w, 1, 0, 0, 0, 0, 0, 1, 0, 0, w^2, w^2, 1, 1, w^2, 1, 1, w, 0, 1, w, 1, w^2, w^2, 0, 0, 1, 0, 0, 1, w^2, w^2, w^2, w^2, 0, 0, w^2, w^2, w, w^2, 0, w^2, 0, 1, 0, w^2, 0, w, w, 1, 0, 1, 1, 1, w, 1, w^2, w^2, w, 1, 1, w, w, w, w^2, w^2, 1, w, 1, 1, 1, w, w^2, w, 1, 1, w^2, w, w, w^2, w^2, 1, 1, w^2, w^2, w, 1, w^2, w^2, w^2, w, w, 1, w^2, 1, w^2, w, 1, w^2, 0, w, 0, w^2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, w^2, w^2, w^2, w^2, 1, w, 1, w, w, w^2, w^2, 1, w^2, w, 1, w^2, w, w^2, w^2, 1, w, w^2, w^2, 1, 1, 1, w^2, w^2, w, 1, 1, 1, w, w, w, 1, 1, w^2, w^2, 1, 1, w^2, w^2, w, 1, w^2, w, w^2, 1, w^2, w^2, w^2, w^2, w^2, w, w^2, w, w^2, w^2, w^2, w^2, 1, w, w^2, w^2, w, 1, 1, w^2, w, 1, 1, w^2, 0, 0, w, w, w^2, w, 1, 1, w^2, w, w, w^2, w^2, w^2, 1, 1, w, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, w, 1, 1, w^2, w, 1, 1, 1, w^2, w^2, w, 1, w, 1, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [156, 7, 109] Linear Code over GF(2^2)
     Puncturing of [1] at { 157 .. 159 }
last modified: 2009-05-05
Lb(156,7) = 108 is found by truncation of: Lb(158,7) = 110 BKW Ub(156,7) = 112 DM3
DM3: R. N. Daskalov & E. Metodieva, Bounds on minimum length for quaternary linear codes in dimensions six and seven, Mathematics and Education in Mathematics, Sofia, (1994) 156-161.
| Notes
 |