| lower bound: | 80 | 
| upper bound: | 83 | 
Construction of a linear code [116,7,80] over GF(4):
[1]:  [116, 7, 80] Linear Code over GF(2^2)
     Code found by Axel Kohnert and Johannes Zwanzger
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, w^2, 1, 0, w, 0, w^2, w^2, 1, 1, w^2, w^2, w^2, w^2, 1, w, w, w, w, w^2, w^2, 1, 0, w, w, w^2, w, 0, 1, w, 0, 0, w^2, 0, w, w^2, w^2, 0, 1, 0, 0, 0, w, 0, 0, 0, w^2, 0, w^2, 1, 0, 0, 1, w^2, w^2, w, w, 1, 1, 1, 1, 1, w^2, 1, w^2, 1, 1, w^2, 1, w^2, 1, w^2, w, 1, w, w, w, w, 1, 1, w^2, 1, w, w^2, w, w^2, 1, w^2, 0, 0, 1, w, 1, 1, w, w^2, 0, w^2, w^2, 0, 1, 0, 0, 0, 1, w^2, w^2, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 1, w, w, w^2, 0, 0, 0, 0, 1, 0, w, w^2, 0, 0, w, w^2, w^2, 1, w, w^2, 1, 0, 1, 1, w^2, 0, w^2, w, w, 1, 0, w, 0, w^2, w^2, 1, w, w^2, w^2, w, w, w^2, 0, w, 0, w, 1, w, 1, w^2, 1, w, 1, w^2, 0, w, 0, w^2, w, w, w, 1, 0, 0, 0, w^2, 0, w^2, 1, 1, w^2, w, w^2, w^2, 1, 0, w^2, w, w, w, w^2, w^2, w, w^2, w^2, w^2, 1, 0, 0, w, 0, 0, w^2, w^2, w^2, 0, 1, 0, 1, w, w, 1, 1, 1, w, 1, 1, w^2, w ]
[ 0, 0, 1, 0, 0, 0, 0, 1, 0, w, w^2, w, 0, 0, w, 0, 1, w^2, w^2, w^2, 1, 1, 0, 0, 1, w, w, 1, w, w^2, 0, w^2, w^2, 0, w^2, 1, w^2, w, 1, w^2, 0, w^2, 1, 1, 1, w, 0, 1, 0, 1, w^2, w^2, 1, w, 1, 1, 1, 1, 0, w^2, w^2, w^2, 0, 0, 1, w^2, w^2, w^2, 1, 0, w^2, w, 1, w, w, w, 1, w^2, 1, 1, w, w, w^2, w, 1, w, w, 1, 1, 1, w, w, w, 0, w, w, w, 0, w^2, 0, 1, 0, 0, 1, w, w^2, 1, w^2, w^2, w, 0, w^2, 1, w^2, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, w, w, 0, w, 1, 0, 0, 1, 1, w, 0, w, w, 1, 0, 1, w^2, w, 0, w^2, 1, 0, 0, 0, 1, w, 1, w^2, 1, 1, 1, w, w^2, 1, 0, 1, w^2, w^2, w, 1, 1, 1, 1, w, 1, 0, 0, w, 1, w^2, 1, 1, 1, 0, 0, w^2, w^2, 0, w^2, w^2, w, w^2, 0, w, 0, 1, 1, w^2, 0, w, w^2, 1, w, w^2, w^2, w, 1, w^2, 1, 1, w^2, 0, w, 1, w, 0, w^2, 0, 0, w^2, w^2, 1, 1, w^2, w^2, 0, 0, 1, w^2, 1, w^2, 1, 0, 1, w, 1, w, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, w, 0, 0, 0, 1, w, w, w^2, 0, 0, w, w, 1, w, w, w^2, w^2, w^2, w, 0, w^2, 0, w, 0, 1, 0, w, w, 1, w, w^2, 1, w, 0, w, w^2, 1, 0, 1, 1, w^2, w^2, 1, 1, w^2, w, 1, w, w^2, 1, w^2, 0, w^2, w, 0, w^2, 0, 1, w, 1, 1, w, 1, w, w^2, w, 0, 0, w^2, 0, 1, 0, w^2, 0, w, 1, w, w, w, w, 1, w, w, 0, w^2, 1, 1, 0, w, 0, 1, w, w, 0, 0, 1, w, w, w, 1, w^2, 0, w^2, 1, w, 1, w^2, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, w, 1, 0, 1, 1, 1, w, w^2, 0, w^2, 0, 1, w^2, 1, 0, w, 0, w, w, w^2, w, w, 1, 1, w, w, w, 1, 1, 0, 1, 0, 0, w, w^2, 1, 0, w, 0, 0, w, w, w^2, 0, w^2, w^2, w^2, w^2, w, 1, 1, 0, w, 1, w, 1, w^2, 0, 0, 1, w^2, w^2, 1, w, 0, 0, w, w^2, w, 1, 0, w^2, 1, 0, 0, w^2, 0, 0, 0, 0, w^2, 0, w^2, w, w^2, 1, 1, w, w, w, w, 0, 0, 0, w^2, 1, w^2, w^2, w, 0, 1, 1, w, 1, w, w ]
[ 0, 0, 0, 0, 0, 0, 1, 1, w, 0, w^2, 0, 0, w, w, w, w, w^2, w, 1, 1, w, 0, w^2, w, 0, w^2, w^2, 0, w, 0, w, 0, 1, 0, 1, w, w, w^2, 0, w, 1, w^2, 0, w^2, 1, 1, w, w, w, w, w, 1, w^2, w^2, 0, 1, w^2, 0, 0, w^2, w^2, w^2, w^2, w^2, 0, 1, 1, 1, w^2, w, 1, w, 0, 0, 1, 0, w, w, 0, w^2, w^2, w^2, 1, w^2, 0, w^2, w^2, 0, w^2, 0, 1, 1, w, w^2, 0, w, w^2, w^2, 0, 0, 1, 1, 0, 0, w, 0, w^2, 0, 1, w^2, 1, 1, 0, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2009-03-02
Lb(116,7) = 79 is found by truncation of: Lb(117,7) = 80 Gu Ub(116,7) = 83 follows by a one-step Griesmer bound from: Ub(32,6) = 20 is found by considering shortening to: Ub(31,5) = 20 Bou
Gu: T. A. Gulliver, personal communications 1993-1998.
| Notes
 |