| lower bound: | 68 | 
| upper bound: | 71 | 
Construction of a linear code [100,7,68] over GF(4):
[1]:  [100, 7, 68] Linear Code over GF(2^2)
     Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, w, w^2, 0, 0, 0, 0, 1, 0, 0, w, w^2, 1, w, w^2, w, w, 1, 1, 0, 1, 0, w^2, w^2, w, 0, 1, w, 1, 0, w, 0, 1, 0, 0, w, 1, 0, w, 1, w, w, 0, 0, w, 0, 1, w^2, w^2, w^2, 0, 1, 1, w^2, w^2, w^2, 1, 0, w, w^2, w, w^2, 0, w, 1, w^2, w^2, 0, 1, 1, 1, 1, 0, w^2, w, w, w^2, 0, w, w, 0, w^2, 1, 0, 1, w^2, w^2, 1, w, w^2, 0, w, 1, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 1, w, w, w^2, 1, 1, w, 1, w, 0, 0, 0, w^2, w^2, w, 0, 1, w, w^2, 0, 0, w^2, w^2, w^2, 1, w, w, w^2, w^2, 1, w^2, w, w^2, w^2, 1, w, w, 0, 0, 1, w, 1, 1, 1, w^2, 1, w^2, 0, 0, 1, 0, 1, w, 1, 1, w, 0, 0, w, 1, w^2, 1, 1, w, w, 0, w, w, w^2, w^2, w, w^2, w, w, 1, w, w^2, w, 0, w^2, 1, 0, w^2, 1, 1, w, 0, 1, 0, w^2, w, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, w, 1, 0, 0, 0, 0, w^2, 0, 1, 1, 1, w^2, w^2, w^2, 0, w, w, 1, w^2, w^2, 1, 0, 0, w^2, w, w^2, w, 0, 0, 1, 0, 0, 0, 1, w, w, 0, 0, w^2, w, w^2, w^2, 0, w^2, 1, 1, w, w, w, w, w, 0, 0, w^2, 1, 1, w, 0, 1, 0, w^2, w^2, 1, 1, 1, w, w, w^2, 0, w, 1, 1, 0, 1, 0, 0, w^2, w, w, w, 1, 0, w^2, w^2, w^2, w, w, w^2, w, w^2, w, 0, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, w, w, w^2, w^2, w^2, w, w, 1, 1, 1, 0, w, w^2, w^2, 0, w, 1, w, 0, 0, w^2, 1, 1, w^2, w, 1, w^2, 1, 0, 1, 1, 1, 0, 1, 1, 1, w^2, w^2, 1, w^2, w, w, 1, w^2, 1, 1, w, w, w, 1, 1, w^2, w^2, 1, w^2, w^2, w^2, 1, 0, 1, w, w, 1, 1, 1, w, 1, 0, w, 0, w^2, 0, 1, 1, 1, 1, w^2, w, 1, 1, w, w^2, 0, 0, 1, 0, w^2, w, w^2, w^2, 1, w, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 1, w, w, 1, 1, 1, 1, w^2, w, 1, w, 1, 1, w, 0, 0, w, w^2, 0, 0, w^2, 1, 0, w^2, w^2, 1, 0, w^2, w^2, w^2, w^2, 1, w^2, w^2, 1, 0, 1, 1, 1, 1, 1, 0, 0, w, 0, w, 1, w^2, 0, w^2, w^2, w^2, w^2, w^2, 1, 1, 0, w^2, w^2, w, w^2, w^2, 0, 1, w^2, w, w, w^2, w^2, 1, 0, 1, 1, w, w^2, 0, 0, w^2, w, 0, 1, w, 1, w^2, 1, w^2, w, w, 0, 1, w^2, w ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, w, 0, w, 0, 0, w, 1, w, w, w^2, w, w, w, 0, w^2, 0, 0, w, w, w, w, 0, 1, w, 1, w, 0, w^2, w, w, w^2, w, 0, w, 0, 0, 0, 1, 0, 0, 1, 0, 0, w, w^2, w^2, 1, w^2, w^2, w, 1, 1, w^2, w^2, 0, 1, w^2, w, 1, 0, w, 1, w, 0, w, 1, 0, w, w^2, w^2, 1, w^2, 1, 1, 0, w^2, w^2, 0, 1, w, w^2, 0, w, 1, w, 1, 0, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, w, 1, 0, w, 0, 0, 1, w^2, w^2, 0, w^2, w, 1, w^2, 1, 0, w, 1, w^2, 0, w, w^2, w, w^2, w, 0, 1, w^2, 0, 1, w, 1, 0, 0, w^2, 0, 0, 0, 1, 0, 1, 0, w^2, 1, 1, w^2, 1, 0, 1, 1, 0, w^2, w^2, w^2, w^2, 1, w, 0, 0, w, w, w^2, 1, 0, w^2, 1, w^2, w, w, w, w^2, 0, 1, w, 0, 1, 1, 0, 1, 1, 1, w^2, w, w, w^2, 1, w^2, 1, w^2, 0, w ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2009-03-02
Lb(100,7) = 67 is found by truncation of: Lb(104,7) = 71 Gu Ub(100,7) = 71 follows by a one-step Griesmer bound from: Ub(28,6) = 17 is found by considering shortening to: Ub(27,5) = 17 is found by considering truncation to: Ub(26,5) = 16 BGV
Gu: T. A. Gulliver, personal communications 1993-1998.
| Notes
 |