lower bound: | 42 |
upper bound: | 43 |
Construction of a linear code [69,6,42] over GF(3): [1]: [70, 7, 42] Quasicyclic of degree 10 Linear Code over GF(3) QuasiCyclicCode of length 70 with generating polynomials: x + 2, x^4 + 2*x^3 + x^2 + 1, x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1, x^5 + x^4 + 2*x^3 + x^2 + 2, x^4 + x^2 + x + 2, x^4 + x^3 + x^2 + 2*x + 2, x^4 + x^2 + 2, x^5 + x^4 + x^3 + x^2 + x + 2, x^5 + 2*x^4 + x^3 + 2*x^2 + 2, x + 1 [2]: [69, 6, 42] Linear Code over GF(3) Shortening of [1] at { 70 } last modified: 2008-05-17
Lb(69,6) = 42 is found by shortening of: Lb(70,7) = 42 Gu2 Ub(69,6) = 43 Ma
Ma: T. Maruta, On the nonexistence of linear codes attaining the Griesmer bound, Geom. Dedicata 60 (1996) 1-7. T. Maruta, On the nonexistence of linear codes of dimension four attaining the Griesmer bound, pp. 117-120 in: Optimal codes and related topics, Proc. Workshop Sozopol, Bulgaria, 1995. T. Maruta, The nonexistence of [116,5,85]_4 codes and [187,5,139]_4 codes, Proc. 2nd International Workshop on Optimal Codes and Related Topics in Sozopol (1998), pp. 168-174. T. Maruta & M. Fukui, On the nonexistence of some linear codes of dimension 4 over GF(5), preprint, 1995. T. Maruta, M. Takenaka, M. Shinohara, K. Masuda & S. Kawashima, Constructing new linear codes over small fields, preprint 2004.
Notes
|