| lower bound: | 172 |
| upper bound: | 175 |
Construction of a linear code [236,6,172] over GF(4):
[1]: [240, 6, 176] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, w^2, 1, w, 0, 1, 1, w, 1, w, w, 0, w, 1, 1, w^2, 0, w, 1, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, 0, 0, 1, w, 0, 0, 1, w^2, 0, 0, 0, w, 0, w, 0, w, w^2, w^2, w^2, w^2, w, 1, 1, w, w^2, 0, w, w^2, 1, 0, 0, 1, 1, 0, w^2, w^2, w, 0, w^2, w, w^2, 1, w, w, w, 1, 0, w^2, 0, w^2, w^2, 0, w, 0, 0, w, w, w, w, w, 0, 1, 0, 0, w, 0, 1, 1, 0, w^2, 1, w^2, w^2, w, w, 1, 0, w, w^2, 1, 1, 1, w, 0, w^2, 0, w^2, 0, w^2, w, 0, 1, w, 1, 1, w^2, w^2, w, w, 1, w^2, w^2, 0, w^2, w, w, w^2, 1, 0, 1, w, 0, 0, w^2, 0, w^2, w, 1, 1, w^2, w^2, w^2, w, w^2, 1, w^2, 0, 1, 1, w, w^2, 0, 0, w, w, w^2, w^2, w, w, w^2, w^2, 1, w, 1, w, 0, w^2, 0, 0, w, w, w^2, w^2, 1, 0, 0, w, w, 0, 0, 1, 1, w, w, w^2, w^2, w^2, w^2, 0, w^2, w, 1, 1, 1, 1, w, 1, 1, w, 1, w, 0, w^2, 1, 1, 1, w, w^2, 0, 1, 0, w^2, w, 1, 1, w, 1, 0, w^2 ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, w, w, 0, w, 0, 1, w, w^2, 0, 0, 1, 0, w, 1, w^2, w^2, 1, 1, 0, w^2, w^2, 1, w, w^2, 0, 0, w^2, w, 1, 0, w^2, w, w, 1, 0, w^2, w^2, 0, 1, 1, w, w^2, w^2, w^2, 0, 1, 0, 0, 0, 0, w, w, 0, w, w, w^2, w, 1, 0, w, w^2, w, w, 1, w^2, w^2, w^2, 1, 0, 1, w, 0, 0, 1, w, w^2, 0, w, 1, 0, 0, 1, w^2, 0, w, w, w^2, 1, 1, 1, 1, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, w, w, 1, 1, w^2, 1, w^2, 1, w^2, 0, w^2, 1, w, 1, w, w, w^2, 1, w^2, w, 1, 0, 0, 0, w, 1, 1, w, w, 0, w^2, w^2, w^2, 1, 0, w, w, w^2, 1, 0, w^2, 1, 1, w^2, 1, 0, w, 1, w^2, 0, w, 1, w^2, w, 0, 1, 1, w, 0, w, 1, 0, w^2, 1, w^2, 0, w, w^2, 1, 0, w, w, 1, w, 0, 0, w^2, 0, 0, w^2, w^2, 0, 0, 1, 1, w^2, 0, 0, w^2, 1, w^2, w, w^2, w^2, 1, 0, w, 1, w^2, w^2, w^2, 0, 0, w, w, w^2, w^2, 0, w, 1, w, w, w, w^2, 1, 0, w, w, w, w, 1, 1, w, w^2, 0, w^2, 0, w, 1, w^2 ]
[ 0, 0, 1, 0, 0, 0, w^2, w, 0, w^2, 1, w^2, w^2, w^2, w^2, 0, 0, w^2, w^2, w^2, w^2, w^2, 0, w^2, w^2, w, 1, w^2, 0, 1, w^2, w, w^2, 1, 0, w^2, 0, w^2, 0, 0, w^2, 0, 1, 0, 1, w, w, 1, 0, w, 1, w^2, 0, 0, w, 0, w, w, w, w, w, 1, w, 0, w, w^2, 1, w^2, w, w, w, w, 1, w^2, 1, w^2, w^2, 0, 0, 1, 1, w^2, 0, w, 0, 1, w^2, w, w, 1, w^2, w^2, 1, 0, 1, 0, w, 1, w^2, 0, 0, w^2, 0, 1, w, w^2, w^2, 0, w, 1, w^2, w, w, 1, w, w, w^2, 0, 0, 1, 1, w^2, 0, 0, w, w, w, 0, w^2, w, w, w, w, w, 1, w, 0, 0, 1, w^2, w, 0, 0, w, 0, 0, w^2, w^2, w^2, w^2, w, w, w, 0, 1, w, w^2, 1, 0, 1, 0, w^2, w, w, w^2, 0, w^2, w^2, w^2, 1, 1, 1, 1, w, 1, 1, 1, 0, w, w, 1, w, w^2, w^2, w^2, 0, w, 1, 0, w^2, 1, 0, w, w^2, 0, w^2, 1, w^2, w^2, w^2, 0, 0, w, 1, w^2, w^2, 1, w, 0, 0, 1, w^2, 0, w, 1, 0, w^2, w, 0, 0, w^2, w, 0, 1, 0, 0, w, w, w, w, 1, w^2, 0, 1, w, 0, w, w, w, w ]
[ 0, 0, 0, 1, 0, 0, 1, w^2, 0, w, w^2, w^2, w^2, w^2, w^2, 0, w^2, w^2, 0, 0, 0, 0, 0, 0, w^2, 1, w^2, 0, w^2, w, w^2, w^2, 0, 1, 1, w, w, w^2, w, 0, 0, w, 0, w, 1, 1, w^2, 0, w^2, w^2, 1, 1, 1, 1, 1, 1, w, w, 1, 0, w^2, w, w, 0, 0, 0, 1, w^2, w, w^2, 0, 1, w^2, 1, w, w^2, 1, 0, w^2, 1, w^2, 1, w, w^2, 1, w^2, w, w, 0, 1, w^2, w, w^2, w, w, w^2, w^2, w^2, 1, w, 0, 0, w, w^2, 1, 1, 0, w, w, w, w, 1, 0, 1, 0, w^2, 1, 1, 0, w, w, 1, w, w, w^2, 0, w^2, 0, 1, w, 1, w^2, w^2, 0, 1, 1, w, 1, w, w, w, w^2, 0, 0, w^2, 1, 1, w, w^2, 0, w, 0, 1, w, w^2, w^2, w, 0, 1, w, 0, w, 1, w, w, 1, 1, 0, 1, 1, w, w^2, 0, w, 0, w^2, w, w^2, w, w, w^2, w^2, 0, w^2, 0, 1, w, w^2, 1, w, 1, 0, w, w^2, w, w, 1, 0, 0, w, w^2, w^2, 0, w, 0, w^2, w, 0, 1, 0, 0, w^2, 1, w^2, 0, w, 0, 0, 1, 1, w, 0, 0, 0, 0, w, w, w^2, 1, 0, 0, w, w, w, w, 0, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 1, 0, w, 1, w^2, w, 1, w, w, w, w, w, 1, w, w, w, w, w, 1, w, 1, w^2, w, w, w, w, 1, 1, w^2, 0, 1, 1, w, 0, w, w^2, 0, 1, w, 1, w^2, 0, w, w^2, 1, w^2, w, w^2, 0, 0, w, 1, 0, 0, w^2, w, 1, w, 1, 1, w^2, w, 1, 1, 1, 1, w, w^2, w, 1, 0, w^2, 1, w, 1, w, 0, w^2, w^2, 0, 0, w^2, 0, 1, w^2, 1, 1, 1, w, w, w^2, w^2, 1, 1, 1, 1, w^2, 0, 1, 0, 1, 0, 1, 0, w, w, 0, w, w^2, 1, w^2, 1, w, 1, 1, w, w, w^2, w^2, w^2, 0, w, 1, 0, 1, w^2, 0, w^2, w^2, 0, 1, w, w^2, 0, w, 0, 1, w, 1, w^2, w, 0, w, w, w, w, 0, w^2, w, w, w, 1, 1, 1, 1, 0, w^2, w^2, 1, 1, 0, 1, w, w, w^2, 1, w, w^2, 0, 1, 0, w, w^2, w^2, 0, w^2, 1, w, 0, w^2, 0, w, w^2, 0, w^2, w^2, w, 1, 1, 1, w^2, 1, 0, w, w, 0, w, w^2, w, w^2, w^2, w^2, 0, 1, w, w^2, w, w^2, w, w^2, w^2, 0, 1, 0, w^2, w^2, w^2, w^2, 1, 0, 1, w, w, w^2, 1, 0, 0, 1, 1, 1, 1, 1, w^2, 0, 1, w ]
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [236, 6, 172] Linear Code over GF(2^2)
Puncturing of [1] at { 237 .. 240 }
last modified: 2006-09-17
Lb(236,6) = 172 is found by truncation of: Lb(240,6) = 176 Koh Ub(236,6) = 175 follows by a one-step Griesmer bound from: Ub(60,5) = 43 is found by considering shortening to: Ub(59,4) = 43 is found by considering truncation to: Ub(56,4) = 40 HLa
Koh: Axel Kohnert, email, 2006.
Notes
|