| lower bound: | 163 |
| upper bound: | 165 |
Construction of a linear code [224,6,163] over GF(4):
[1]: [225, 6, 164] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, w^2, 0, 0, 1, 0, w, 1, w^2, w^2, 1, 1, 0, w^2, w^2, 1, w, w^2, 0, 0, w^2, w, 1, 0, w^2, w, w, 1, 0, w^2, w^2, 0, 1, 1, w, w^2, w^2, w^2, 0, 1, 0, 0, 0, 0, w, w, 0, w, w, w^2, w, 1, 0, w, w^2, w, w, 1, w^2, w^2, w^2, 1, 0, 1, w, 0, 0, 1, w, w^2, 0, w, 1, 0, 0, 1, w^2, 0, w, w, w^2, 1, 1, 1, 1, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, w, w, 1, 1, w^2, 1, w^2, 1, w^2, 0, 1, w, w, w^2, w, 0, w, 1, 1, w, 0, w^2, w^2, 1, 0, w, w, w^2, 1, 0, w^2, 1, 1, w^2, 1, 0, w, 1, w^2, 0, w, 1, w^2, w, 0, 1, 1, w, 0, w, 1, 0, w^2, 1, w^2, 0, w, w^2, 1, 0, w, w, 1, w, 0, 0, w^2, 0, 0, w^2, w^2, 0, 0, 1, 1, w^2, 0, 0, w^2, 1, w^2, w, w^2, w^2, 1, 0, w, 1, w^2, w^2, w^2, 0, 0, w, w, w^2, w^2, 0, w, 1, w, w, w, w^2, 1, 0, w, w, w, w, 1, 1, w, w^2, 0, w^2, 0, w, 1, w^2 ]
[ 0, 1, 0, 0, 0, 0, 1, 0, 0, w, 0, 0, w^2, w, 0, w, w, 0, w, 0, 1, w^2, w^2, 1, w, w^2, w^2, 0, 1, 0, w^2, w, 1, 0, w^2, 1, 0, 1, w^2, 0, w, w, w, w, w, 1, w^2, 1, 0, w^2, 0, w^2, 0, 0, 0, 0, 0, 1, w^2, w^2, 1, 1, w, 0, 1, w, w, w, 0, 1, 1, 1, 1, 0, w^2, 0, 1, w^2, w^2, 1, 0, 0, w, 0, 1, 1, 1, 1, 1, 1, 0, w^2, 0, w, 1, 1, w^2, w^2, 1, w, w, w^2, w^2, 1, 1, 1, 1, 0, w^2, w^2, w^2, 0, 0, 1, w^2, 0, w^2, w, w, 0, w^2, w, 1, w, w, w, w, w, w, w, 1, w, 1, 0, w^2, 1, w^2, w, 0, w^2, w, 1, 0, w^2, w, w, 1, 0, w^2, 1, w^2, 1, w^2, 0, w, 0, w^2, 1, w, 0, 0, w^2, w, w^2, w^2, w^2, 0, 0, w, 0, 1, w, w^2, 0, w^2, 0, 1, 0, 1, w^2, w^2, 1, w, w, w^2, 0, w^2, 1, 0, w, 1, w^2, 0, w, 0, w^2, w, w^2, 1, w, w^2, w, 1, w^2, 1, 0, w^2, 0, w^2, w^2, w^2, 1, w^2, 0, w, w, w^2, w, 0, 1, w^2, w^2, 1, w, 0 ]
[ 0, 0, 1, 0, 0, 0, w, 0, w^2, w, w, 0, w, w, 1, w, w, 0, w, w, 0, 0, 0, 1, w^2, w^2, 1, 1, 1, 1, w, 1, 0, w, 1, w^2, w, 0, w^2, w^2, 1, w^2, 1, 0, w^2, 1, 1, w^2, 1, w^2, 1, 0, 1, w, w^2, 0, 0, w^2, 1, w, w^2, 1, 1, 1, w, 0, 1, w, 0, w, 0, w, w, w^2, w, 1, w, w^2, 1, w^2, 1, w^2, w, w^2, 1, 0, 1, w^2, 0, w, w^2, 1, 1, w^2, 0, w, 0, w^2, w^2, 1, w^2, 0, w^2, w^2, w, 1, 0, w^2, w, w, 1, 0, 1, w, 1, 0, w^2, w^2, w^2, 1, w, 0, 0, 1, w, 0, 0, w^2, 0, 0, w^2, w^2, 1, w, 0, w^2, w, 1, w, 0, w^2, 1, w, 0, w^2, w^2, 1, w, 0, 1, 0, w, 0, 0, 0, 0, 0, 0, w, w, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, w^2, w, 0, 1, w, w^2, w, 1, 0, w^2, w, 1, w, w, w, w^2, w, 1, 0, w, 0, 1, w^2, w, 0, w^2, 1, 0, w, 1, w^2, w, 1, 0, w^2, w^2, w, 0, w^2, 1, w^2, w^2, 1, w, 0, 1, w, 1, 0, w^2, 1, w^2, 0, 1, w ]
[ 0, 0, 0, 1, 0, 0, w^2, w^2, 0, w^2, 0, w, w^2, 1, 0, 1, 1, 1, 1, w^2, 1, w^2, w, 1, 0, 1, w, 1, 0, 1, 1, w^2, 1, w, 1, 1, 1, w, w^2, 0, 0, w, 1, 0, w^2, w, w^2, w^2, 0, 1, 1, w^2, 1, w, w^2, 0, 1, w^2, w^2, 0, w^2, 1, w, 0, w^2, w, w^2, 0, w^2, 0, w, 0, 1, 1, w^2, w^2, w, 1, w^2, w^2, 0, w, 1, w, 1, 0, 0, w, 1, w^2, w^2, w, w, w, w, 0, 0, w^2, 0, 1, w^2, 1, w, 0, w, 1, 0, w, 0, 0, w, 0, 1, w, w^2, 1, 1, 0, 1, w, w^2, w^2, 0, w, 1, w^2, w^2, 0, w^2, w^2, w^2, 1, w^2, 0, w, w, 0, w, w, w^2, 1, 0, w, w^2, w, w, w, 0, w, 1, w^2, w^2, w, 1, w^2, 1, w, 0, 1, w^2, 1, w, w, w^2, 0, 0, w^2, w, 0, w, 1, w^2, 1, w^2, w^2, 1, w, 0, 0, 1, 1, 0, 1, 1, 0, w, 1, 0, 0, 0, w, 1, 0, w^2, w^2, w^2, 0, 0, 1, 1, w, w, w, 1, 0, 1, 0, 1, 1, w^2, 0, 0, 0, 0, 0, w, 1, 0, w, w^2, w^2, 0, w, 1, w^2 ]
[ 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, w^2, 0, w^2, w^2, 1, w^2, 0, 1, w^2, 0, w, 1, 0, w^2, 0, 1, 1, 1, w, w, 1, 0, w, 1, 1, 0, w^2, 1, 1, 0, w, 1, 1, 1, w^2, 1, w^2, 0, w, w^2, w^2, w^2, w^2, w, 1, 1, w, w^2, 0, w, w^2, 0, 1, 1, 0, 0, 1, w, w, w^2, 1, w, w^2, w, 0, w^2, w^2, w, 1, 0, w^2, 0, w^2, w, 1, w^2, 1, 1, w^2, w^2, w^2, w^2, w^2, 1, 0, 1, 1, w^2, 1, 0, 0, 1, w, 0, w, w, w^2, w, 1, 0, w, w^2, 1, 1, 0, 1, w, w^2, 0, 0, w, w, w^2, w, w, 1, w, w, w^2, w, 0, 1, 1, w, 0, 1, w, 1, w, w^2, 0, 0, w, w, w, w^2, w, 1, w^2, 0, 1, 1, w, w^2, 0, 0, w, w^2, w, w, w^2, w^2, w, w, 0, w^2, 0, w^2, 1, w, 1, 1, w^2, w^2, w, w, 0, 0, 0, w, w, 0, 0, 0, 0, w^2, w^2, w, w, w, w, 1, w, w^2, 0, 0, 0, 0, w^2, 0, 0, w^2, 0, w^2, 1, w, 0, 1, 0, w^2, w, 1, 1, 1, w, w^2, 0, 1, w^2, 0, 1, w ]
[ 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, w, 1, w, w, 0, w, 1, 1, w^2, 0, w, 1, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, 0, 0, 1, w, 0, 0, 1, w^2, 0, 0, 0, w, 0, w, 0, w, w^2, w^2, w^2, w^2, w, 1, 1, w, w^2, 0, w, w^2, 1, 0, 0, 1, 1, 0, w^2, w^2, w, 0, w^2, w, w^2, 1, w, w, w, 1, 0, w^2, 0, w^2, w^2, 0, w, 0, 0, w, w, w, w, w, 0, 1, 0, 0, w, 0, 1, 1, 0, w^2, 1, w^2, w^2, w, w, 1, 0, w, w^2, 1, 1, 0, 0, w^2, w, 1, 1, w^2, w^2, w, w^2, w^2, 0, w^2, w, w, w^2, 1, 0, 1, w, 0, 0, w^2, 0, w^2, w, 1, 1, w^2, w^2, w^2, w, w^2, 1, w^2, 0, 1, 1, w, w^2, 0, 0, w, w, w^2, w^2, w, w, w^2, w^2, 1, w, 1, w, 0, w^2, 0, 0, w, w, w^2, w^2, 1, 0, 0, w, w, 0, 0, 1, 1, w, w, w^2, w^2, w^2, w^2, 0, w^2, w, 1, 1, 1, 1, w, 1, 1, w, 1, w, 0, w^2, 1, 1, 1, w, w^2, 0, 1, 0, w^2, w, 1, 1, w, 1, 0, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]: [224, 6, 163] Linear Code over GF(2^2)
Puncturing of [1] at { 225 }
last modified: 2006-09-17
Lb(224,6) = 163 is found by truncation of: Lb(225,6) = 164 Koh Ub(224,6) = 165 follows by a one-step Griesmer bound from: Ub(58,5) = 41 is found by considering shortening to: Ub(57,4) = 41 is found by considering truncation to: Ub(56,4) = 40 HLa
Koh: Axel Kohnert, email, 2006.
Notes
|