| lower bound: | 160 |
| upper bound: | 162 |
Construction of a linear code [220,6,160] over GF(4):
[1]: [220, 6, 160] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, w^2, w, 0, w^2, w, 0, 0, w^2, w^2, w, w, 0, 0, 0, 1, w, w, 0, w^2, w, 1, w, w, 0, w^2, w, 1, 1, w^2, w, w^2, w, w^2, w^2, w, w, 0, 0, w, 1, w^2, 1, w, 1, w^2, 1, 0, w^2, 0, w^2, 1, 1, w^2, w, w, 1, 1, 1, 1, w^2, w^2, w^2, w^2, 0, 1, w^2, 0, 0, w, w^2, w^2, w^2, w^2, w^2, 0, w^2, 0, w, 0, w, 1, 1, w^2, 1, w, w^2, 1, 1, 1, w, w, 0, w, w, 1, w, 0, 0, w^2, w, w, 0, w, w, w, w, w, w, w^2, w, 1, 0, w^2, w, 0, 0, 0, w^2, w, w^2, w, w, 1, 1, 0, w^2, w, w, 1, 0, 0, 1, 0, 0, 1, 1, w, w^2, w^2, 1, w^2, 0, w^2, w, 0, 0, 0, w^2, w, 1, w, w^2, w^2, 1, 0, 1, 0, 0, 1, 1, 0, w, w^2, w^2, 1, 0, w, w, w^2, 1, 0, 0, 0, 1, 1, 0, 1, 1, w, 0, 0, 0, w^2, w, w, 0, 0, 1, 0, 0, 0, w^2, w, w, w^2, w^2, w^2, w, 1, 1, w, 1, w, 1, 1, 1 ]
[ 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, w, 0, w, w^2, w, 1, w, w^2, 0, w, w, w^2, w^2, 0, 0, w, 0, w, w^2, 0, w, 0, 1, 0, w, 1, 0, w, w, w^2, 1, 1, w^2, w, w, w^2, w, w, w^2, w^2, 1, 1, w^2, 0, w, 0, 1, w, 1, w^2, w^2, 0, w, 1, w^2, w^2, 1, 0, 1, w, w^2, w^2, w^2, 1, 1, 1, 0, w^2, w, 0, w^2, w^2, 1, 0, w^2, w^2, w^2, w^2, 0, w^2, w, 0, w^2, 1, w, w, 1, w^2, 1, 0, w, w, w, 1, 0, w, 1, 1, w^2, 0, w, w, 1, 0, w, 0, w, w, w, w, w, w, 1, w, w^2, 0, w^2, 0, 0, w, 1, w, 1, w, w^2, w^2, 0, w, w, 1, 0, 0, w^2, w, 1, 0, 1, 1, 0, 0, 1, w^2, w^2, w, w^2, 0, 0, w, w^2, 0, 1, 1, w^2, w^2, w^2, w, w, 0, 1, 0, 1, 1, 0, 0, w^2, 1, 0, 0, w, w^2, 0, 0, 1, w^2, w, w, 1, 0, 0, 1, 0, 0, w, 1, 1, w, w^2, w, 0, 0, w^2, w, 0, 0, w^2, w, 1, w^2, 0, 0, 1, 1, w, w^2, w, 1, w, 1, 1, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, w, 0, w, w, w^2, 0, w^2, w, 1, w, w, 0, 0, w, w, w, 0, w, w, 1, 0, w, w, w^2, w^2, 0, w, 0, 1, 0, 1, 1, w, w^2, w^2, w, 1, 1, 1, 1, 1, 1, 1, w, 1, w^2, w^2, 0, w, 0, w, 1, w^2, 0, w^2, w^2, w, w^2, w^2, 0, w^2, w^2, w, 0, w^2, w^2, w^2, 0, w^2, 1, w^2, w^2, 1, w^2, 1, 1, 0, 0, w^2, w^2, w^2, 1, w, 0, w, w, w, 0, w^2, w, w, w, w^2, 0, w, 0, w, w, w, 1, w, w, 1, w, 0, w, w, 1, 1, 0, w, w, 1, 1, 1, 1, w, 1, w, 1, 0, w^2, 0, 1, 0, 0, w^2, 0, 0, w, w^2, w^2, 0, w, w, w, 1, 1, 0, 0, 1, w^2, w^2, 1, 1, 1, 1, w^2, 1, w^2, 0, 0, w, 0, 1, 0, 0, w, w^2, w^2, 1, 1, 0, 0, 0, w^2, w, w, 0, w^2, 0, 0, 1, 0, 1, 0, w^2, w, w^2, w, 0, 0, w, 0, 0, w^2, w, w^2, 1, w, 1, 0, 1, 1, w, w^2, 0, w, 0, 0, 1, w, 1, 1, 1, w, w, w^2, 1, 1 ]
[ 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, w^2, w, 0, w^2, w, w, 0, w, 1, w, w, 0, w^2, w, 0, w^2, w, w^2, w^2, 1, 1, w^2, w^2, 1, w, 1, w^2, 1, 0, w^2, w, w^2, w, 1, 1, w, 1, w^2, 1, w^2, w, 0, 0, 0, 0, 1, w, 1, w^2, 1, w, w^2, w^2, 0, w, w^2, w^2, 0, w^2, 1, w, w, w, w, w^2, 1, w, 0, w, 0, w, w, w, 0, 1, 0, w, w, 1, 1, w^2, w, w, 0, w^2, 0, w, w, w, 1, w^2, w^2, w^2, 1, w^2, w^2, w, 0, w^2, 0, w^2, w^2, w^2, w^2, w^2, 1, 0, 1, 0, w, 1, 1, w, 1, w^2, w^2, 0, 0, 0, w, 1, 1, 1, w, 0, 1, 1, w, 1, 1, w^2, w^2, w, 1, 0, w^2, 1, w^2, 0, 1, w^2, 1, 1, w^2, w, 0, w, 0, 0, w^2, 1, 1, 1, 1, w^2, 0, 1, 1, 0, w, 1, w, 0, w^2, 1, 1, w, w, w^2, 0, 1, 1, 0, 1, 1, w^2, w, 1, 1, w^2, 1, w, w, 1, 0, w^2, w^2, w, 0, 1, 1, w^2, 0, 1, w^2, 1, w, 0, w^2, 0, 0, w^2, 0, w^2, w^2, 0, 0, w, 0 ]
[ 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, w, w^2, 0, w, 0, w, 0, w^2, w, w, 1, w^2, 1, 0, 1, w, w^2, 0, 1, w, 1, w^2, 1, 0, w^2, w^2, 1, 1, w^2, w^2, w, w^2, 1, 1, w^2, w, w, 1, w^2, 1, w, w^2, 1, w, 1, w^2, 0, 0, 0, 0, w^2, w^2, 1, w, w, 0, 0, 1, w, w, w, 1, 0, w, 1, 0, w, w, w, w, w, 0, w, 0, w^2, w, w, 1, w, 1, w, w, 1, w^2, w^2, 0, w^2, w^2, 0, 1, w^2, 1, 0, w^2, w^2, w^2, 1, 0, w^2, w^2, w^2, 0, w^2, 0, 1, w^2, 1, w, w^2, w^2, 1, w, 1, w, 1, w, 1, 1, w, 1, w^2, w^2, 0, 1, w^2, 1, w^2, 0, 0, 1, 0, w, 1, w, 0, 1, 1, w^2, 0, w^2, 1, 1, w^2, 1, w^2, w^2, 1, 1, 1, w^2, w, 0, w, 0, 1, w, 1, w, 0, 1, 1, w, 0, w, 0, 1, 0, w^2, 1, w^2, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, w^2, w, 0, w^2, 1, w^2, w, 1, 1, w^2, w, 1, w, 0, w^2, w, w^2, w^2, 0, 0, w^2, w^2, 0, 0, w^2, 0, 0, 0, w ]
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2004-04-21
Lb(220,6) = 160 BKW Ub(220,6) = 162 follows by a one-step Griesmer bound from: Ub(57,5) = 40 is found by considering shortening to: Ub(56,4) = 40 HLa
HLa: R. Hill & I. Landgev, On the nonexistence of some quaternary codes, Proc. IMA conf. Finite Fields and their Applications, June 1994.
Notes
|