| lower bound: | 152 |
| upper bound: | 153 |
Construction of a linear code [208,6,152] over GF(4):
[1]: [208, 6, 152] Linear Code over GF(2^2)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, w^2, w, 1, 0, 0, 1, 0, 1, 1, 1, w, 0, w, w^2, w^2, w, w, 1, w^2, w^2, 1, w^2, 1, w, 1, w^2, 1, w, w^2, w^2, w^2, 1, w^2, 0, 1, w, w, w^2, 0, 1, 1, 1, 0, 0, 0, w^2, w^2, 0, 0, w^2, w^2, 1, w^2, 0, w^2, w, 0, w, w, w^2, w, w^2, 1, 1, 0, w^2, 0, 0, w, w, 1, w^2, w, 0, w^2, 0, w^2, 0, 0, 0, 1, w^2, 1, w^2, w, w, 1, w, 0, 0, w, w, w, 1, 1, 0, 1, w, 1, 1, w, w^2, 0, 0, w^2, 1, w, w, w, 1, 1, 0, w^2, 1, w^2, 1, 1, w^2, 1, w^2, w, 0, w, 1, w^2, 1, w^2, 1, 0, 0, w^2, w^2, w^2, 0, w^2, w^2, 0, 1, w^2, 0, 0, w, 0, w^2, 0, 1, w^2, 1, 1, 0, 1, 0, w, 1, 1, 0, 0, 1, 0, w, 0, w, 1, w, 0, w, 0, 0, w, w^2, 0, w^2, w^2, 1, 1, w, 0, 1, w^2, 0, w^2, 0, w^2, w^2, 0, w^2, 1, w^2, 0, 1, 1, w^2, 0, 0, 1, w, 1, w, 0, w^2, w, w^2, w, 0, 1, w ]
[ 0, 1, 1, 1, 1, 0, 0, 0, 0, w^2, w, w, 0, w^2, w, 0, w^2, w, w^2, 0, w, w^2, 1, 0, w, w^2, w^2, w, 0, 0, w^2, w, 1, 1, 1, 0, w, 1, 0, w^2, w^2, 1, 1, w^2, 0, 0, w, 0, 1, 0, w, 1, 0, w^2, w^2, w, 0, 0, 1, 0, w, 0, w^2, w, 0, w, 1, 0, 0, 1, 1, w, 1, w, w^2, w^2, w, 1, w^2, 1, w^2, w^2, w^2, w, 1, w, 1, w, w^2, w^2, w, w^2, w^2, 1, 1, 1, 0, w, w, w^2, 0, w, w, w, 0, 1, w^2, w, w^2, 0, 0, w, 1, w^2, 1, 0, w^2, 0, 0, w^2, 1, 0, w, 0, 1, 0, w, 1, 1, 0, w, w, w^2, w, 1, w, 1, w^2, w^2, w, w, 1, 0, w^2, w^2, w, 0, 0, 1, 0, w, 0, w^2, w, 0, w, 1, 0, w, 0, w^2, w^2, w, 0, 1, 0, w^2, 0, 0, w, w, 1, 0, 0, 1, 1, w, 1, w, w^2, w^2, w, 1, w^2, 1, w^2, w^2, w, w^2, 1, w, 0, w^2, w, w^2, 0, 1, 1, 1, 0, w, w^2, 1, 1, w, w^2, 0, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 1, 0, w^2, w^2, w, w, 0, w, 0, w, w^2, 1, w, 0, w^2, w^2, w^2, 0, w^2, w, 1, w^2, 0, w^2, w^2, w, w, 0, 0, w, 1, 1, 1, w, w^2, 0, w^2, 0, 1, w, 0, w^2, w, 1, 1, 1, 0, w, 0, w, w^2, 0, 0, w^2, w, w, w^2, w^2, 1, w, w^2, w^2, w^2, w, 0, 1, 0, 1, w^2, w, 1, 0, w, 1, w^2, 0, w^2, w, 0, 0, 0, 1, w, 1, 1, w^2, w^2, w, 0, w^2, w, 1, 0, 0, w^2, 1, w, w^2, w^2, 1, w, 0, w, w, w^2, 1, 0, w, w, w^2, 0, 1, w^2, w^2, 0, 1, w, 1, w, 1, 0, w, 1, w^2, w, 1, 1, 0, w^2, 0, w^2, 0, w, w^2, w^2, w^2, w, 0, w, 0, 1, w, w, 1, 0, 0, 1, 1, w^2, w, 0, w^2, w, 1, w^2, w, w, 0, 1, 0, 1, 0, w^2, w^2, 0, 1, 1, 1, 0, w, w^2, w, w^2, 1, 0, w^2, w, 0, w^2, 1, w, 1, w^2, w, 0, w, 0, w, w, w^2, w^2, 0, w^2, 0, w^2, w, 0, 1, w^2, w, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, 0, w, w, 0, w^2, w^2, w, 1, w^2, 0, w, w, w, 1, w^2, 0, 1, 1, 0, 1, 1, 0, w, w, 0, w, w, 0, w, 1, 0, w, w^2, 0, w, w, 1, w^2, 1, w^2, 1, 0, 1, w^2, 0, w, 1, 1, w^2, w, 0, w^2, w^2, w, 0, 1, 0, 0, w^2, w, 0, w^2, 1, 0, w^2, w^2, w, 1, w, 1, w, 0, 1, w, w^2, w^2, w^2, w, 0, 1, 0, 1, w^2, w, 1, 0, w, 1, w^2, 0, w^2, w, 0, 0, 0, 1, w, 1, 1, w^2, w^2, w, 0, w^2, w, w^2, 1, w, w, w, 0, 1, 0, 0, w^2, w^2, 1, w^2, w^2, w^2, w, 0, w, 0, 1, w, w, 1, 0, 0, 1, 1, 0, w, 1, w^2, 0, 0, w, w^2, 1, w, w, w^2, 1, 0, 1, w, w, w, 0, w^2, 0, w^2, 1, 0, 0, 1, w^2, w^2, 1, 1, 1, w, w^2, 1, w, 0, 1, w, w, w^2, 0, w^2, 0, w^2, 1, w^2, w, 0, 1, 1, w, 1, w^2, 0, 1, 1, 0, w^2, w^2, 0, 1, 1, 0, w^2, w^2, w^2, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, w, w^2, w^2, 1, w, w^2, 1, w, w^2, w, 1, w, w^2, 1, 1, w^2, w, w, w^2, 1, 1, w, w^2, 0, 0, 0, 0, w, 1, w^2, 0, 0, w, w^2, 1, w, w, w^2, 1, 0, 1, w, 1, 0, 0, 0, 1, w^2, w, w^2, w, 0, 1, w, w^2, 1, w, 1, 0, w^2, w, w, 1, w^2, 0, 1, 1, w^2, 0, w, 0, w^2, w^2, w^2, 1, w, 1, w, 0, 1, 1, 0, w, w, 0, 0, 1, 0, w, 1, 0, w^2, 1, 0, 0, w, w^2, w, w^2, w, 1, 0, w, 1, 0, w, w^2, 0, w, w, 1, w^2, 1, w^2, 1, 0, 0, w, 1, w, w^2, 1, 1, 1, 0, w^2, 0, 0, w, w, w^2, w, 1, 0, 0, 0, 1, w^2, w, w^2, w, 0, 1, w, w^2, 1, w, 1, 0, 1, w^2, 0, 0, 0, w, w^2, w, w, 1, 1, w^2, w, 1, 0, w^2, w, w, 1, w^2, 0, 1, 1, w^2, 0, w, 0, w^2, w^2, w, w^2, 1, w^2, 1, w, w^2, w, 1, 0, 0, 0, 1, w^2, w, 1, 1, w, w^2, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] where w:=Root(x^2 + x + 1)[1,1];
last modified: 2008-07-29
Lb(208,6) = 150 is found by truncation of: Lb(210,6) = 152 BKW Ub(208,6) = 153 follows by a one-step Griesmer bound from: Ub(54,5) = 38 is found by considering shortening to: Ub(53,4) = 38 is found by considering truncation to: Ub(51,4) = 36 LMH
LMH: I. Landgev, T. Maruta, R. Hill, On the nonexistence of quaternary [51,4,37] codes, Finite Fields Appl. 2 (1996) 96-110.
Notes
|