| lower bound: | 72 |
| upper bound: | 74 |
Construction of a linear code [95,5,72] over GF(5):
[1]: [95, 5, 72] Linear Code over GF(5)
code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 3, 4, 3, 2, 2, 3, 2, 4, 1, 3, 1, 3, 1, 2, 1, 4, 3, 2, 2, 4, 3, 2, 3, 3, 4, 2, 4, 1, 3, 1, 2, 1, 4, 1, 0, 4, 4, 0, 0, 1, 0, 1, 2, 2, 4, 2, 3, 2, 3, 3, 0, 4, 1, 1, 2, 2, 0, 4, 0, 3, 0, 2, 3, 1, 3, 2, 0, 0, 3, 2, 1, 0, 1, 3, 0, 2, 0, 0, 0, 3, 0 ]
[ 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 3, 2, 3, 3, 2, 3, 4, 1, 4, 1, 2, 2, 3, 1, 2, 3, 4, 2, 1, 3, 4, 3, 4, 2, 4, 1, 3, 2, 1, 3, 2, 4, 1, 0, 4, 4, 0, 1, 4, 0, 0, 3, 4, 1, 3, 3, 1, 4, 3, 2, 2, 2, 3, 0, 0, 0, 1, 0, 4, 3, 2, 1, 3, 2, 3, 0, 2, 1, 0, 1, 2, 2, 0, 0, 3, 0, 0, 1, 0, 0, 3 ]
[ 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 2, 3, 4, 1, 1, 2, 2, 3, 4, 1, 2, 3, 3, 4, 4, 1, 2, 3, 3, 2, 3, 1, 2, 3, 1, 2, 4, 3, 4, 1, 0, 4, 4, 0, 1, 4, 0, 0, 4, 2, 2, 3, 3, 1, 2, 2, 4, 0, 3, 0, 0, 3, 4, 1, 2, 3, 3, 0, 2, 1, 1, 0, 0, 1, 1, 2, 3, 0, 0, 1, 2, 3, 3, 0, 2, 0, 1, 0, 0 ]
[ 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 0, 1, 1, 1, 0, 0, 0, 1, 4, 4, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3 ]
[ 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
last modified: 2006-03-27
Lb(95,5) = 72 Koh Ub(95,5) = 74 follows by a one-step Griesmer bound from: Ub(20,4) = 14 is found by considering shortening to: Ub(19,3) = 14 is found by considering truncation to: Ub(17,3) = 12 Hi4
Koh: Axel Kohnert, email, 2006.
Notes
|