| lower bound: | 65 |
| upper bound: | 65 |
Construction of a linear code [85,5,65] over GF(5):
[1]: [85, 5, 65] Linear Code over GF(5)
Code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 4, 2, 1, 3, 3, 4, 4, 2, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 2, 4, 3, 2, 0, 3, 3, 4, 1, 0, 3, 0, 0, 0, 0, 4, 1, 1, 0, 0, 2, 4, 0, 1, 1, 1, 3, 0, 2, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 4, 4, 4, 4, 3, 2, 3, 4, 2, 4, 3, 2, 3, 1, 4, 2, 3 ]
[ 0, 1, 0, 0, 0, 3, 0, 2, 4, 3, 2, 0, 3, 2, 3, 4, 3, 4, 4, 0, 1, 4, 4, 2, 0, 1, 4, 3, 1, 1, 3, 2, 4, 2, 4, 4, 0, 3, 4, 3, 3, 3, 4, 0, 3, 0, 3, 2, 4, 2, 3, 3, 0, 2, 3, 3, 3, 0, 2, 3, 4, 1, 2, 3, 0, 4, 1, 1, 3, 4, 4, 4, 4, 4, 3, 1, 4, 0, 1, 1, 2, 2, 2, 1, 3 ]
[ 0, 0, 1, 0, 0, 3, 4, 3, 0, 2, 3, 4, 3, 3, 1, 3, 1, 1, 1, 3, 0, 4, 4, 0, 4, 0, 3, 0, 1, 2, 3, 1, 4, 3, 0, 2, 4, 4, 3, 2, 4, 1, 1, 2, 0, 1, 2, 4, 4, 3, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 4, 4, 2, 2, 3, 2, 0, 0, 1, 4, 0, 2, 4, 4, 0, 1, 0, 0, 3, 0, 3, 4, 4, 1, 4 ]
[ 0, 0, 0, 1, 0, 4, 2, 2, 4, 1, 0, 1, 2, 3, 1, 2, 4, 4, 1, 4, 3, 0, 2, 1, 0, 1, 0, 3, 1, 2, 0, 0, 2, 1, 1, 3, 3, 4, 2, 3, 4, 2, 2, 2, 1, 3, 0, 1, 2, 4, 4, 1, 2, 1, 1, 0, 2, 2, 4, 0, 3, 1, 4, 0, 2, 1, 2, 4, 2, 0, 3, 0, 4, 3, 3, 0, 0, 2, 0, 4, 0, 4, 3, 1, 1 ]
[ 0, 0, 0, 0, 1, 4, 0, 0, 2, 3, 3, 1, 1, 4, 3, 1, 1, 1, 4, 4, 3, 2, 0, 0, 2, 4, 3, 3, 4, 2, 3, 4, 4, 1, 0, 1, 4, 2, 1, 1, 3, 3, 3, 1, 0, 2, 4, 1, 0, 3, 0, 3, 3, 4, 4, 1, 2, 4, 1, 0, 4, 1, 0, 4, 1, 3, 4, 1, 2, 1, 3, 4, 3, 3, 3, 0, 1, 4, 3, 1, 2, 3, 4, 4, 1 ]
last modified: 2008-10-21
Lb(85,5) = 64 GB7 Ub(85,5) = 65 follows by a one-step Griesmer bound from: Ub(19,4) = 13 is found by considering shortening to: Ub(18,3) = 13 is found by considering truncation to: Ub(17,3) = 12 Hi4
Hi4: R. Hill, Optimal linear codes, pp. 75-104 in: Cryptography and Coding II (C. Mitchell, ed.), Oxford Univ. Press, 1992.
Notes
|