| lower bound: | 48 |
| upper bound: | 48 |
Construction of a linear code [75,5,48] over GF(3):
[1]: [76, 6, 48] Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 2, 1, 0, 2, 2, 0, 2, 1, 1, 2, 1, 2, 1, 0, 1, 2, 2, 2, 1, 2, 1, 2, 0, 0, 0, 0, 2, 0, 1, 2, 2, 0, 2, 0, 1, 0, 1, 1, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 0, 0, 2, 0, 1, 2 ]
[ 0, 1, 0, 0, 1, 2, 1, 2, 1, 0, 2, 0, 1, 1, 2, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 1, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 1, 2, 2, 1, 1 ]
[ 0, 0, 1, 0, 2, 2, 0, 0, 1, 0, 1, 1, 0, 0, 2, 2, 1, 1, 1, 2, 1, 2, 0, 1, 2, 0, 2, 0, 0, 2, 1, 2, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 2, 1, 2, 0, 0, 2, 0, 2, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 2, 2, 0, 2, 0, 2, 1, 1, 2, 0, 1, 2, 1 ]
[ 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[2]: [75, 5, 48] Linear Code over GF(3)
Shortening of [1] at { 76 }
last modified: 2001-12-17
Lb(75,5) = 48 is found by shortening of: Lb(76,6) = 48 Bo3 Ub(75,5) = 48 HN
HN: R. Hill & D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992), 137-157.
Notes
|