| lower bound: | 46 |
| upper bound: | 46 |
Construction of a linear code [72,5,46] over GF(3):
[1]: [74, 5, 48] Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 2, 1, 2, 0, 1, 2, 0, 2, 2, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1, 2, 0, 0, 0, 2, 1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 2, 1, 2, 1, 1, 0, 2, 0, 1, 2, 0, 1, 0, 0, 2, 1, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 0, 2, 0, 1, 2, 1 ]
[ 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 0, 1 ]
[ 0, 0, 1, 2, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 0, 1, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 2, 2, 2, 1, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 ]
[2]: [72, 5, 46] Linear Code over GF(3)
Puncturing of [1] at { 73 .. 74 }
last modified: 2001-12-17
Lb(72,5) = 46 is found by truncation of: Lb(74,5) = 48 BB Ub(72,5) = 46 is found by considering truncation to: Ub(71,5) = 45 HW1
HW1: N. Hamada & Y. Watamori, The nonexistence of $[71,5,46;3]$ codes, J. Statist. Plann. Inf. 52 (1996) 379-394.
Notes
|