lower bound: | 51 |
upper bound: | 53 |
Construction of a linear code [63,5,51] over GF(9): [1]: [63, 5, 51] Linear Code over GF(3^2) Code found by Axel Kohnert Construction from a stored generator matrix: [ 1, 0, 0, 0, 0, w^6, w^6, w^2, w^5, 2, w, w^5, w^3, 1, w, w^6, w^2, w^6, w^5, w, w^5, 2, w^6, 0, w^5, 1, w^3, 2, 0, w^7, w^5, w^5, 1, w^3, w^5, w^5, 0, w^6, 0, 1, w^6, w, w^6, w^6, 0, w^2, w^2, w^3, w^6, 1, 2, w^3, w, w^5, w^2, w^2, w^5, w^7, w, w^3, 0, w^6, 0 ] [ 0, 1, 0, 0, 0, w, w^5, 0, w^7, w^6, w^7, 1, w, w^5, w^3, 0, w, w, w^6, w^2, w^6, 1, 1, w^7, 0, w^7, w^3, w^7, 2, w^5, w^3, w, w, 0, w^6, 1, 1, w^6, w^5, w^5, w^3, w^3, w^7, 2, w, w^5, 0, w^2, 1, w^7, w^6, w^6, w^7, 0, 1, w^7, 1, w^6, 0, w^3, 0, w^6, w^6 ] [ 0, 0, 1, 0, 0, 2, w^2, 2, w^3, 0, w^3, 0, w^3, w^6, w, w, w^6, 1, w^7, w, w, w, w^5, w^7, w^6, w^6, w^5, 2, w^3, 1, w, w^5, w^2, 2, w^3, w^6, 1, w, w^2, 1, 1, w, w, w^3, w^7, w^3, 0, w, w, 0, 2, 1, w^3, 1, 1, w^6, w^3, w^7, w^3, w^2, w^2, 2, w ] [ 0, 0, 0, 1, 0, w^3, 0, w^7, w^7, 2, w^6, w^7, 0, 2, w, w^7, w, 2, w^5, 2, w^3, w^5, 2, 2, w^5, w, 0, w^5, 2, w^6, w^7, w, w^3, w^7, w^3, w^5, w, 0, 1, 1, w^2, 1, w^7, w^6, 0, w^3, w^6, 1, w^2, w^6, w^6, w^6, 0, 2, w^3, w^6, w, 0, 0, w, w^7, w^7, 1 ] [ 0, 0, 0, 0, 1, 1, 2, w^6, w^6, w, w^7, w^3, 2, w^5, w^5, w^7, w^6, w^3, w^7, w^2, w^2, 0, w^2, w^2, w^6, w^5, w^5, 0, w^7, w^3, w^3, w^3, w^6, w^5, 0, w^3, w^6, 2, 1, w^7, 1, 2, 0, w^6, w^7, 2, w^7, w^7, w^7, 0, w^3, w^6, 1, 1, w^2, w^2, 2, 0, w, w^6, w^2, 1, 0 ] where w:=Root(x^2 + 2*x + 2)[1,1]; last modified: 2010-04-28
Lb(63,5) = 50 is found by truncation of: Lb(66,5) = 53 BGu Ub(63,5) = 53 is found by considering truncation to: Ub(55,5) = 45 is found by construction B: [consider deleting the (at most) 4 coordinates of a word in the dual]
Notes
|