| lower bound: | 38 |
| upper bound: | 38 |
Construction of a linear code [60,5,38] over GF(3):
[1]: [61, 5, 39] Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 2, 0, 1, 2, 0, 1, 0, 2, 1, 2, 0, 0, 0, 1, 2, 1, 2, 1, 0, 0, 2, 1, 1, 2, 2, 1, 0, 1, 1, 2, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0 ]
[ 0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 0, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 0, 1, 2, 1, 0, 2, 2, 1 ]
[ 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 2, 1, 0, 2, 0, 2, 2, 1, 2, 1, 0, 2, 2, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 2, 1, 1, 2, 2, 1, 0, 0, 0, 2, 2, 2, 1, 1, 1, 2, 2, 2 ]
[ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0 ]
[2]: [60, 5, 38] Linear Code over GF(3)
Puncturing of [1] at { 61 }
last modified: 2001-12-17
Lb(60,5) = 38 is found by truncation of: Lb(61,5) = 39 vE0 Ub(60,5) = 38 follows by a one-step Griesmer bound from: Ub(21,4) = 12 HN
vE0: M. van Eupen, Five new optimal ternary linear codes, IEEE Trans. Inform. Theory 40 (1994) 193.
Notes
|