| lower bound: | 26 |
| upper bound: | 26 |
Construction of a linear code [42,5,26] over GF(3):
[1]: [44, 6, 27] Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 2, 2 ]
[ 0, 1, 0, 0, 2, 0, 1, 0, 2, 2, 1, 2, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 2, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 1, 2, 0, 0 ]
[ 0, 0, 1, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 2, 2, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 2, 1 ]
[ 0, 0, 0, 1, 2, 0, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 1, 2, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 0, 2, 0, 1, 1, 2, 0, 0, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[2]: [43, 6, 26] Linear Code over GF(3)
Puncturing of [1] at { 44 }
[3]: [42, 5, 26] Linear Code over GF(3)
Shortening of [2] at { 43 }
last modified: 2001-12-17
Lb(42,5) = 26 is found by shortening of: Lb(43,6) = 26 is found by truncation of: Lb(44,6) = 27 Bo1 Ub(42,5) = 26 is found by considering truncation to: Ub(40,5) = 24 vE1
vE1: M. van Eupen, Some new results for ternary linear codes of dimension $5$ and $6$, IEEE Trans. Inform. Theory 41 (1995) 2048-2051.
Notes
|