| lower bound: | 181 | 
| upper bound: | 181 | 
Construction of a linear code [244,5,181] over GF(4):
[1]:  [247, 5, 184] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 1, 1, 1, w^2, w^2, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w^2, w^2, w^2, 0, 1, 1, 1, w, w, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, w, w, w, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, w, w, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, w, w^2, w^2, w^2, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w^2, w^2, 0, 0, 0, 1, 1, w, w, w, 0, 0, 0, 0, w, w, w, w^2, w^2, w^2, w^2, w, 0, w, 0, w^2, 1 ]
[ 0, 1, 0, w, w^2, 1, 0, w^2, w, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w^2, 1, 0, w, w^2, 1, w, w^2, 1, 0, w, w^2, 1, 0, 1, w, 0, w^2, w, 0, 1, w^2, w, 1, w^2, 0, 0, 1, w^2, w, 0, w^2, w, 1, w, 1, w^2, 0, w, 0, w^2, w, 1, 1, w^2, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, w^2, 1, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, w^2, 1, w^2, 1, 0, w, w^2, 1, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w, 0, w^2, 1, w, w^2, 1, 1, 0, w, w^2, w, w, w^2, 1, 0, w, 1, 0, w, w^2, 0, w^2, 1, 1, w^2, w, 0, 1, w, 1, w^2, w, 0, w^2, w^2, w, 1, w^2, 1, w, 0, 1, 0, w, w^2, 1, 0, w^2, 0, w, w^2, 1, w, w^2, 1, w, w^2, 0, 0, w, 1, w, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w^2, w, 0, 1, w, 0, 1, w^2, 1, 0, w, w^2, w, w^2, 1, 0, 0, w, w^2, 1, w, w^2, 1, 0, w, w^2, 1, w^2, w, w^2, w, w, w^2 ]
[ 0, 0, 1, w^2, w, 0, 1, w, w^2, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w, 0, 1, w^2, w, 0, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 0, w, 1, 0, w, w^2, 1, 0, w^2, 1, w, w^2, w, 0, 1, w^2, 0, 1, w, 1, w, 0, 0, w, 0, w^2, w, 1, 1, w^2, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w^2, w, 0, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, w^2, 1, 0, w, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w^2, 1, 1, w^2, 0, 1, w^2, w^2, w, 0, 1, 0, 1, 0, w, w^2, 1, w, w^2, 1, 0, w^2, 0, w, 1, w^2, w, 0, 1, w, 1, w^2, w, 0, w^2, w, w^2, 0, w, 0, w^2, 1, w^2, w, 0, 1, w^2, w, 1, w, 0, 1, w^2, 0, 0, w, 1, 0, w^2, w^2, 1, w, w, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, w^2, 1, 0, w^2, 1, 0, w, w^2, w, 0, 1, 0, 1, w^2, w, w^2, 1, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, w^2, 1, 1, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 1, 0, 0, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [244, 5, 181] Linear Code over GF(2^2)
     Puncturing of [1] at { 245 .. 247 }
last modified: 2001-12-17
Lb(244,5) = 181 is found by truncation of: Lb(247,5) = 184 Bo1 Ub(244,5) = 181 is found by considering truncation to: Ub(243,5) = 180 Ha
Ha: N. Hamada, pers. comm.
| Notes
 |