| lower bound: | 178 | 
| upper bound: | 178 | 
Construction of a linear code [240,5,178] over GF(4):
[1]:  [242, 5, 180] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 1, 1, 1, w^2, w^2, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, 1, w, w, w^2, w^2, w^2, 0, 1, 1, 1, w, w, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, w, w, w, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, w, w, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 1, 1, w^2, w^2, w^2, 1, 1, 1, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w^2, w^2, 0, 0, 0, 1, 1, w, w, w, 0, 0, 0, 0, w, w, w, w^2, w^2, w^2, w^2, w, 0, w, 0, w^2, 1 ]
[ 0, 1, 0, w, w^2, 1, 0, w^2, w, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w^2, 1, 0, w, w^2, 1, w, w^2, 1, 0, w, w^2, 1, 0, 1, w, 0, w^2, w, 0, 1, w^2, w, 1, w^2, 0, 1, w^2, w, 0, w^2, w, 1, w, 1, w^2, 0, w, 0, w^2, w, 1, 1, w^2, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, w^2, 1, 0, w, 1, 0, w, w^2, 1, w, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, w^2, 1, w^2, 1, 0, w, w^2, 1, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 1, w, 0, w^2, 1, w, w^2, 1, 1, 0, w, w^2, w, w, w^2, 1, 0, w, 1, 0, w, w^2, 0, w^2, 1, 1, w^2, w, 0, 1, w, 1, w^2, w, 0, w^2, w^2, w, 1, w^2, 1, w, 0, 1, 0, w, w^2, 1, 0, w^2, 0, w, w^2, 1, w, w^2, 1, w, w^2, 0, w, 1, w, 1, w^2, w, 1, w^2, w, 0, 1, w^2, w^2, w, 0, 1, w, 0, 1, w^2, 1, 0, w, w^2, w, w^2, 1, 0, 0, w, w^2, 1, w, w^2, 1, 0, w, w^2, 1, w^2, w, w^2, w, w, w^2 ]
[ 0, 0, 1, w^2, w, 0, 1, w, w^2, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w, 0, 1, w^2, w, 0, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 0, w, 1, 0, w, w^2, 1, 0, w^2, 1, w, w, 0, 1, w^2, 0, 1, w, 1, w, 0, 0, w, 0, w^2, w, 1, 1, w^2, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 1, w^2, w, 0, w^2, w, 0, 1, w^2, 0, 1, w^2, w, 0, w^2, 1, 0, w, w^2, 1, 0, w, 0, w, w^2, 1, 0, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, w, 0, 1, w^2, 0, w, w^2, 1, 0, w, w^2, 1, 0, w, w^2, 0, w^2, 1, 1, w^2, 0, 1, w^2, w^2, w, 0, 1, 0, 1, 0, w, w^2, 1, w, w^2, 1, 0, w^2, 0, w, 1, w^2, w, 0, 1, w, 1, w^2, w, 0, w^2, w, w^2, 0, w, 0, w^2, 1, w^2, w, 0, 1, w^2, w, 1, w, 0, 1, w^2, 0, 0, w, 1, 0, w^2, 1, w, w, 1, w^2, w, 1, w^2, w, 0, 1, w^2, w, w^2, 1, 0, w^2, 1, 0, w, w^2, w, 0, 1, 0, 1, w^2, w, w^2, 1, 0, w, 1, 0, w, w^2, 1, 0, w, w^2, w^2, 1, 1, w, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 1, 0, 0, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [240, 5, 178] Linear Code over GF(2^2)
     Puncturing of [1] at { 241 .. 242 }
last modified: 2001-12-17
Lb(240,5) = 178 is found by truncation of: Lb(242,5) = 180 Bo1 Ub(240,5) = 178 is found by considering truncation to: Ub(239,5) = 177 LaM
LaM:
| Notes
 |