| lower bound: | 169 | 
| upper bound: | 169 | 
Construction of a linear code [228,5,169] over GF(4):
[1]:  [231, 5, 172] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, w^2, 0, w, 0, 1, w^2, 0, w^2, w, 0, 1, w, 0, 1, w, w^2, 0, w, w^2, 1, w, 0, 1, w, w^2, w, w^2, 0, 1, w, w^2, 0, 1, 0, w, w^2, 1, w, w^2, 0, 1, w, w^2, 0, w, 1, w^2, 0, 1, w, w^2, 0, 1, 0, 1, w^2, 0, w, w^2, w, w^2, 1, w, w^2, 0, 1, 1, w^2, w, 1, w, w^2, 0, w, 1, w, 0, w, 0, 1, 1, w^2, 0, 1, w^2, 0, w^2, 0, 1, w, w^2, 0, 1, 1, w, w^2, 0, w, w^2, 0, w, w^2, w, w^2, 0, 1, w, 0, 1, w, 0, 1, w, w^2, 0, 1, w^2, w, w^2, 1, w, w^2, 1, w, 0, w^2, 0, 1, w^2, 0, 1, w, w^2, 0, 1, w, w^2, 0, 1, w, w^2, w, w^2, 1, w, 0, 1, w, 0, 0, 1, w, w^2, 1, w, w^2, 1, w, w^2, 0, 1, w^2, 0, w, w^2, w^2, 0, w, 1, w, w^2, 0, 1, w^2, 1, w, w^2, 0, 0, 1, w^2, 1, w, w^2, 0, 1, w, w^2, 1, w, w^2, 0, 1, w, 0, 1, w, 0, 1, w^2, 0, 1, w, 0, w, w^2, 0, w, w^2, w, w^2, 1, 0, w^2, 1, w, 0, w, w^2, w^2, 1, 0, 0, 0, 0, 0, 1, 1, w^2 ]
[ 0, 1, 1, 0, 0, 1, 1, 1, w, w, w^2, 0, 0, 0, 1, 1, 1, 1, w, w, w, w^2, w^2, 0, 0, 0, 0, 1, 1, w, w, w, w, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w, w^2, w^2, 0, 0, 1, 1, 1, 1, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, w^2, w^2, w^2, 0, 0, 1, 1, w, w^2, w^2, w^2, 0, 0, 1, 1, w, w, w^2, w^2, 0, 0, 1, 1, 1, w, w, w^2, 0, 0, 0, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, w, w, w^2, w^2, w^2, 0, 0, 1, 1, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 1, 1, 1, 1, w, w, w^2, w^2, 0, 0, 0, 1, w, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, w^2, 0, 0, 0, 1, 1, 1, w, w, w, w^2, w^2, 0, 1, 1, w, w, w^2, w^2, w^2, 0, 0, w, w, 0, 1, w, 1, 1, w ]
[ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 1, w^2, 1, w, w, w^2, 0, w ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 1, 1, 1, w, w, w, w, w^2, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [228, 5, 169] Linear Code over GF(2^2)
     Puncturing of [1] at { 229 .. 231 }
last modified: 2002-05-01
Lb(228,5) = 169 is found by truncation of: Lb(231,5) = 172 Koh Ub(228,5) = 169 follows by a one-step Griesmer bound from: Ub(58,4) = 42 is found by considering truncation to: Ub(56,4) = 40 HLa
Koh: Axel Kohnert, email, 2006.
| Notes
 |