| lower bound: | 157 | 
| upper bound: | 157 | 
Construction of a linear code [212,5,157] over GF(4):
[1]:  [215, 5, 160] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, w^2, 0, 0, w^2, w^2, w^2, 0, w^2, w^2, w^2, w^2, 0, w^2, 0, 0, w^2, 0, 0, 0, 0, 0, w^2, 0, 0, 0, 1, 1, w^2, 1, 1, w^2, 1, w^2, 1, w, w, w, w, w, w, 1, w, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, w^2, 0, w^2, 0, w^2, 0, w^2, w^2, w^2, w^2, w^2, w^2, w, w^2, 0, w^2, w, w, w, w, 0, w, w, 0, w, 1, 1, w, 1, 1, 1, 1, 1, w, 1, w, w, w, w, w, w, 1, w, 1, 1, 1, w, w, 1, w, 1, 1, 0, 1, 0, 1, 0, w, w, 0, w, 0, 0, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, w^2, w^2, w^2, 0, 1, 1, w^2, 0, 1, 1, 0, 0, 0, 0, w, 0, w, w, 1, 1, w, w^2, w^2, w^2, w^2, w^2, w^2, w, w, 0, 0, 1, 1, 1, w^2, 1, w, w^2, w, w, w^2, w, w, w^2, w^2, 0, w^2, w^2, 1, 1, 0, 0, 1, 1, 0, 1, w, 0, 1, w, w, w, w, w, w, w, w, w, w, 1, w, w, 1, w^2, w^2, w, 1, w^2, w^2, 1, w^2, 1 ]
[ 0, 1, 0, 0, 0, 0, w^2, w, 1, 0, w, 0, 1, w^2, w, 1, w^2, 1, w^2, w, w^2, w, w, w^2, w, w^2, w, w, 0, w^2, w, w, 0, 0, 0, w^2, 1, 0, 1, 0, 0, 0, 1, 1, 0, w^2, w^2, w^2, 0, w^2, 1, 1, 0, 0, 1, 1, 1, w, w^2, w, w, 1, w^2, 0, w^2, 0, w, 0, w, w^2, w, w, w, w, w^2, w^2, w, w, 0, 0, w, w^2, 1, 0, w^2, 0, w^2, 1, 0, w^2, 1, w^2, 1, 1, 0, 1, 1, 0, 0, w, w^2, w, 1, w, 0, 1, 1, w, w, 1, w^2, w^2, w^2, w^2, w^2, w, w^2, w^2, w^2, w, w^2, w, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, w^2, w, 1, w^2, w, w^2, w^2, w^2, w^2, w, w, w^2, w, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, w, w^2, 0, w, w, w, w, w^2, w, w, w, w^2, w, w^2, w^2, w, w, w^2, w^2, w^2, w, w^2, 1, w^2, w^2, 0, w, w^2, 1, w, 1, 1, 1, w, 0, 1, w, 1, 1 ]
[ 0, 0, 1, 0, 0, w, 1, 0, 1, 1, 1, w^2, w, w^2, w, w^2, 0, 0, 1, w, w, 1, 0, 1, 0, w, w^2, w, 0, 1, 1, 1, 1, 1, 1, w^2, w^2, w, 0, w^2, w, 0, w, w, 0, 1, 1, w, w^2, w^2, 1, 0, w, 1, w^2, w, w, 1, 1, 0, w^2, 1, w^2, 0, 0, 1, w, w, w, 0, 1, 1, 0, 1, w^2, w^2, w^2, 0, w^2, w^2, w^2, 1, 1, 0, w, 1, w, w, w, w^2, 0, 0, 0, w^2, w, w^2, 0, 1, 1, w^2, 1, 0, 1, 1, w^2, w, w, w, w, w^2, 0, 0, w^2, 0, w, w, 1, w, w^2, w, 1, w^2, w^2, w, 0, w, w, 0, 1, 1, 0, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, w, w, w, 0, 1, 0, 0, w^2, w^2, 1, 0, w^2, 1, w, w, 0, 1, 0, 0, w^2, w, 1, w^2, w, w^2, 1, 0, w, w, 0, 0, w, w^2, w^2, w, 1, 1, w^2, w^2, w, w^2, 0, w^2, w, 0, w, w, 1, 1, w^2, w^2, w^2, 1, 0, w^2, w, 0, 1, 1, 1, 0, w^2, w^2, w^2, w^2, 0, w^2, w^2, 0, 1, 1, 0, w, 1, 0 ]
[ 0, 0, 0, 1, 0, 1, w, w, 1, 1, w, 1, 1, 1, w, 1, w^2, 1, 1, 1, 1, 1, 0, w^2, 1, 0, 1, 0, w^2, 0, 0, 0, w^2, w, w, 0, w, w, w, w, w, w, w^2, w, w^2, 0, 0, 0, w^2, 0, w^2, w, w, w^2, w, w, w, 1, 0, 1, 0, w^2, 0, w^2, 0, w^2, 0, w^2, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, w^2, w^2, 1, 1, w^2, w^2, 1, w^2, 0, w^2, w^2, 0, w, 0, w^2, w, 0, w^2, 0, 0, w, w, w, w, 1, w, 1, 1, 1, w, w, 1, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 1, 1, 1, 1, 0, 0, w, w, 0, w, 0, 0, w, w, 0, 1, 1, w, w^2, 1, 1, w^2, w^2, w^2, w^2, 0, w^2, 0, 0, 1, 1, 0, w, w, w, w, w, w, 0, 0, w^2, w^2, 0, 0, 0, w^2, 0, 1, w^2, 1, 1, w^2, 1, 1, w^2, w^2, w, w^2, w^2, 0, 0, w, w, 0, 0, w, w^2, 1, w, w^2, 1, w^2, w^2, w, w, w, 1, w^2, w, 1, w, w, 1, w, 0, 0, 1, w, 0, 0, w, 0, 0 ]
[ 0, 0, 0, 0, 1, w, w^2, w^2, w, 1, w, 1, 1, 0, 1, 0, 1, w^2, w, w, 1, 1, 1, 0, 0, w, w^2, w^2, w, w^2, 0, 0, w^2, w^2, w^2, 1, 0, 0, 0, 1, w^2, w, w, w^2, 1, w, w, 1, 0, 0, w^2, w^2, 0, w, 0, 1, 1, 0, 0, 1, w^2, 1, w, 1, 1, 0, w, w^2, 0, w, w, w^2, w^2, w^2, 0, w^2, 0, w, w^2, w^2, 1, 1, 0, 0, w, 1, w, 1, w, w^2, w, 0, w^2, 1, 1, 0, w, w, 0, w, 1, 1, 0, 0, w^2, w^2, w^2, w^2, w^2, w, 0, w^2, 0, w, 1, 1, w, 0, w, w, w^2, w^2, w, w, w^2, 0, 0, w^2, 1, 1, w, w, w, 1, w^2, w^2, 1, 1, 1, 0, 0, w^2, w^2, w^2, w^2, w, w, 0, 1, w^2, w^2, w, 1, 1, w, 1, 1, 0, 0, w^2, 1, w, 0, 0, w^2, 0, 0, w^2, w, w, 1, 1, 1, w, 0, w^2, 0, w^2, 0, w^2, w, 0, w^2, 1, w, w, w, w, w, 1, 0, 0, w, 0, w^2, w^2, 0, 0, w^2, 1, 1, 0, 1, w, 1, w, 1, 1, w, w^2, w, w, 0, w^2, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [212, 5, 157] Linear Code over GF(2^2)
     Puncturing of [1] at { 213 .. 215 }
last modified: 2002-10-15
Lb(212,5) = 157 is found by truncation of: Lb(215,5) = 160 BGV Ub(212,5) = 157 follows by a one-step Griesmer bound from: Ub(54,4) = 39 is found by considering truncation to: Ub(51,4) = 36 LMH
LMH: I. Landgev, T. Maruta, R. Hill, On the nonexistence of quaternary [51,4,37] codes, Finite Fields Appl. 2 (1996) 96-110.
| Notes
 |