| lower bound: | 151 | 
| upper bound: | 151 | 
Construction of a linear code [204,5,151] over GF(4):
[1]:  [205, 5, 152] Quasicyclic of degree 41 Linear Code over GF(2^2)
     QuasiCyclicCode of length 205 with generating polynomials: 1,  x^3 + x^2,  w^2*x^3 + x^2,  x^3 + x,  w^2*x^3 + x,  x^3 + x^2 + x,  w*x^3 + x^2 + x,  w*x^3 + w*x^2 + x,  x^3 + w^2*x^2 + x,  w*x^3 + w^2*x^2 + x,  w^2*x^3 + w^2*x^2 + x,  w*x^3 + x^2 + 1,  w^2*x^3 + x^2 + 1,  x^3 + w*x^2 + 1,  w*x^3 + w*x^2 + 1,  w^2*x^3 + w*x^2 + 1,  x^3 + w^2*x^2 + 1,  w*x^3 + x^2 + x + 1,  w^2*x^3 + x^2 + x + 1,  w*x^3 + w*x^2 + x + 1,  x^3 + x^2 + w*x + 1,  w^2*x^3 + x^2 + w*x + 1,  x^3 + w*x^2 + w*x + 1,  w^2*x^3 + w*x^2 + w*x + 1,  w*x^3 + w^2*x^2 + w*x + 1,  x^3 + x^2 + w^2*x + 1,  w^2*x^3 + x^2 + w^2*x + 1,  x^3 + w*x^2 + w^2*x + 1,  w*x^3 + w*x^2 + w^2*x + 1,  w*x^3 + w^2*x^2 + w^2*x + 1,  x^4 + w*x^3 + x^2 + x + 1,  x^4 + w^2*x^3 + x^2 + x + 1,  x^4 + w^2*x^3 + w*x^2 + x + 1,  x^4 + w^2*x^3 + w^2*x^2 + x + 1,  x^4 + w*x^3 + x^2 + w*x + 1,  x^4 + w^2*x^3 + w*x^2 + w*x + 1,  x^4 + w*x^3 + w^2*x^2 + w*x + 1,  x^4 + w*x^3 + x^2 + w^2*x + 1,  x^4 + w^2*x^3 + x^2 + w^2*x + 1,  x^4 + w*x^3 + w*x^2 + w^2*x + 1,  x^4 + w^2*x^3 + w*x^2 + x + w
[2]:  [204, 5, 151] Linear Code over GF(2^2)
     Puncturing of [1] at { 205 }
last modified: 2001-12-17
Lb(204,5) = 151 is found by truncation of: Lb(205,5) = 152 Bo1 Ub(204,5) = 151 follows by a one-step Griesmer bound from: Ub(52,4) = 37 is found by considering truncation to: Ub(51,4) = 36 LMH
LMH: I. Landgev, T. Maruta, R. Hill, On the nonexistence of quaternary [51,4,37] codes, Finite Fields Appl. 2 (1996) 96-110.
| Notes
 |