| lower bound: | 108 | 
| upper bound: | 109 | 
Construction of a linear code [148,5,108] over GF(4):
[1]:  [152, 5, 112] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, w^2, w, w, 0, w^2, 0, w^2, 0, 1, w^2, w, w, 1, 1, 1, 0, w^2, 0, w, 1, w, w, 0, w, w, 0, 0, w^2, 0, w, 1, w^2, 0, 0, 0, w^2, w, 1, w^2, w, w, 0, w, 0, 1, 0, w, 1, 1, 0, w^2, w^2, 0, w^2, w^2, w, 0, 0, w, 0, w, 1, 1, 1, w^2, 1, w^2, w, 0, 1, 0, 1, w^2, 1, w^2, 0, w, w, w, w, 1, w, w^2, 0, 1, w^2, w^2, 1, 1, 1, 1, w, 0, 0, w, 1, 0, w^2, 0, 1, 1, 1, w, 1, w, 0, 1, w, 1, w^2, 0, 1, 1, w^2, w^2, 1, w^2, 1, w^2, 1, w, w, w, 1, w, w, 1, 0, 1, 1, w^2, 1, w^2, 0, 0, 1, 0, w, w, w^2, 1, w^2, w^2, 1, 0, w^2, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, w, w^2, w, w, 1, 0, w^2, w, 0, 1, 1, w, 1, w, w^2, w, w^2, w^2, w^2, w, w, w^2, w, 1, w^2, w, w, w, w^2, w, 0, w, 1, w^2, w^2, w, w, w, 1, 1, 1, w, 1, 1, w, w^2, 1, w, w^2, 1, 0, 1, w^2, w^2, w, w, w, w^2, w^2, w, w^2, 0, w^2, w^2, 1, w^2, w, 1, w, 1, w^2, 0, w, w^2, 1, w, 0, 0, 0, 0, 0, 0, 0, 0, 0, w, w^2, 0, 0, w, 1, w^2, 0, w^2, w^2, 0, w^2, w, w, 1, w, w^2, 1, w^2, w^2, 0, 0, 0, w, 0, w, 1, w, 1, 1, 1, 0, w, 1, w^2, 1, 1, 0, 0, 0, w^2, w^2, w^2, 0, w^2, 0, w, 1, 1, 1, w^2, 1, 0, 0, 1, w^2, w ]
[ 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, w, 0, 1, 0, 0, 0, 1, 0, w, 1, 0, w^2, w^2, w, w, 0, w^2, w^2, 1, w, w, w, 1, w^2, w^2, w^2, 1, w^2, 0, 0, w^2, 1, 1, 1, w, w^2, w, 0, w, 1, 0, 1, w, w^2, 0, w, w^2, w, 1, 1, 0, 1, w^2, 1, 0, 1, 1, 1, w, 0, w^2, 1, w, 0, 0, w^2, w, w^2, w, w^2, w^2, w^2, w^2, w, w, w, w^2, w, w, w^2, w^2, w, w^2, w, w^2, 0, w^2, 1, 0, 1, 1, 0, 0, 0, 0, w^2, 1, w, w^2, 0, 1, 1, w^2, 1, w, w^2, 0, w, 1, 0, w, w^2, 0, 1, 0, 1, w, w^2, w^2, 0, 0, 1, w, w^2, w^2, 1, 1, 1, 0, w^2, 1, 1, 1, 1, 0, 0 ]
[ 0, 0, 0, 1, 0, w, w^2, w^2, 1, w, w^2, w, w, w, 1, 1, w, w^2, w^2, w^2, w, w, w^2, w, 1, w^2, w^2, w, 1, 1, w, 0, 0, 0, 1, 0, 0, 0, w, 1, 0, 1, 1, 1, w, w^2, w, w, w, w^2, w^2, w^2, w, w, 1, w, w, w^2, w^2, w^2, w, 0, w^2, 1, 1, 1, 0, 0, 0, w, 1, 0, 1, 1, w, w^2, 1, w, w, w^2, w^2, 1, 1, w, w, w^2, w, w^2, 1, 1, w, w^2, 0, 1, 0, w, w^2, 1, w^2, w, w^2, 1, 1, 0, 0, w, w, 1, w, w^2, 0, w, w, w^2, 1, 1, w, 0, w, 1, 0, 0, 1, 0, w, 1, 0, 0, 0, w, w, 1, w^2, 0, 1, 1, w, w^2, w^2, 0, w, 1, 0, 1, 1, 1, 0, 1, 1, 1, w^2, w ]
[ 0, 0, 0, 0, 1, w^2, w, w^2, 0, w, w^2, 1, w, w^2, w, w, w^2, w, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, w^2, w^2, 0, w, w^2, w^2, 0, 0, w, 1, w, 0, 1, w, 1, w, 0, 0, 0, 1, 1, 0, w, w, w^2, 1, 1, 0, w^2, w, w^2, 0, w^2, w, 1, w, w, 0, w, w, 0, 1, w^2, w^2, 1, w^2, w, w, 0, w, 0, w^2, w^2, 1, w, w^2, 0, 1, 0, 1, w, w, 1, 0, w^2, w^2, w, 1, w^2, w^2, w, w^2, w, w, 1, w^2, w^2, 0, w, 1, w^2, w, w^2, 1, w^2, 0, w^2, 1, 1, 1, w, w^2, 1, 1, w, 1, 0, w, 0, w^2, 1, 1, w, 0, w, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, w, w^2, w^2, 0, w, w, 1, 1, 1, w^2 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [148, 5, 108] Linear Code over GF(2^2)
     Puncturing of [1] at { 149 .. 152 }
last modified: 2001-12-17
Lb(148,5) = 108 is found by truncation of: Lb(152,5) = 112 Bo1 Ub(148,5) = 109 follows by a one-step Griesmer bound from: Ub(38,4) = 27 follows by a one-step Griesmer bound from: Ub(10,3) = 6 GH
GH: P.P. Greenough & R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1994) 187-199.
| Notes
 |