| lower bound: | 105 | 
| upper bound: | 106 | 
Construction of a linear code [144,5,105] over GF(4):
[1]:  [147, 5, 108] Linear Code over GF(2^2)
     Construction from a stored generator matrix:
[ 1, 0, 0, 1, w, w^2, 0, 1, 0, w^2, 0, 1, w, w^2, 1, 0, w^2, w, 0, w, 0, 1, w^2, w, 1, w^2, w, w, 1, w^2, 0, 0, w, w^2, w^2, 0, 1, 0, 1, w^2, w, w, 1, 1, w^2, 0, w^2, w, w^2, 1, 0, 1, w, w^2, w, 0, w^2, w^2, 1, 1, 0, 1, 0, w, 1, 0, 0, 1, w, w^2, 0, w^2, 0, 1, w^2, w, 1, 0, w^2, 1, 0, w^2, w, 1, w^2, 0, w, 0, 1, w, 1, 0, w^2, w, 0, 1, w^2, w, 0, 0, 1, w^2, w, 0, 1, w^2, w, w^2, 1, w, w^2, 1, 1, 0, 1, 0, w, w^2, w^2, w^2, w, 0, w, w^2, 0, 1, w^2, 0, 1, w^2, w, 1, 1, 0, w, 0, 1, 0, w, w^2, 0, w^2, w^2, w^2, w, w^2, w ]
[ 0, 1, 0, 1, 1, 0, w^2, w^2, w, 1, 0, w, w, w^2, 0, 1, w, 0, w^2, 1, w^2, w, 1, 0, w^2, w, w^2, w, 1, 1, w, w^2, 1, 0, w^2, 0, 1, 0, 1, w, w^2, 0, w^2, w, 0, 1, w, w, w^2, 1, w^2, w, 1, 0, 0, w^2, 0, w^2, 1, w^2, w, 0, 1, w^2, 0, 1, 0, 1, w, w^2, w^2, 1, 0, 1, w, w^2, w^2, w, 0, w^2, w, 1, w, w^2, 1, 0, w, w, w^2, 0, w, w^2, w^2, w, 1, 0, 0, 1, w^2, w, w^2, 1, w^2, 1, 0, w^2, w, 1, w, w^2, w, 0, 1, w, w, w^2, 1, 1, w, w^2, w, 0, 0, 1, w, w, w^2, 0, 0, w, w^2, 1, w, w^2, 0, w, 1, 0, 0, 1, w^2, 0, 1, w, w^2, 0, 1 ]
[ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w^2, w^2, w^2, w^2, w^2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, 1, w, 0, 1, 1, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, w^2, 0, 1, 0, 1, w, w^2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 ] where w:=Root(x^2 + x + 1)[1,1];
[2]:  [144, 5, 105] Linear Code over GF(2^2)
     Puncturing of [1] at { 145 .. 147 }
last modified: 2001-12-17
Lb(144,5) = 105 is found by truncation of: Lb(147,5) = 108 Bo1 Ub(144,5) = 106 follows by a one-step Griesmer bound from: Ub(37,4) = 26 follows by a one-step Griesmer bound from: Ub(10,3) = 6 GH
GH: P.P. Greenough & R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1994) 187-199.
| Notes
 |