lower bound: | 98 |
upper bound: | 101 |
Construction of a linear code [117,5,98] over GF(9): [1]: [117, 5, 98] Linear Code over GF(3^2) Code found by Axel Kohnert Construction from a stored generator matrix: [ 1, 0, 0, 0, w^3, w^5, 2, w, 2, w, 0, w^3, 1, w^6, 1, w^7, 0, 2, w^6, w, 2, w^2, 1, w^2, w^2, w^6, 0, 0, w^2, w^3, 2, 2, w^2, 2, w^2, w^2, w^6, w^5, 1, 1, w^7, w^2, 0, 0, w^7, w, 2, w^7, w, 0, w^6, w^3, w^2, w^5, w^3, w^2, 1, w^6, w^7, 0, w^7, w, w^7, w^2, 1, w^2, 1, w^3, 1, w^7, 0, w^6, w^7, 0, 1, w^2, w, w, w^7, 2, w^3, w^5, w^3, w, 1, 0, w^3, 2, w, 0, 2, w^3, w^6, w, 2, 1, w^3, w^7, 0, w, 0, 1, w, w^3, w^2, w^2, w^5, 1, 2, 1, 1, w^3, 2, w, 2, w^3, w^2 ] [ 0, 1, 0, 0, w^5, 2, 1, w^2, w^5, 1, w^3, w, w^2, w^3, w^6, 2, 0, 0, w^3, 2, w^5, 2, 1, 0, w, 1, w^6, w, w^2, w^6, w, w^6, w, 2, w^3, 1, w^6, w^3, w^5, w^7, 2, w^5, w^7, w^5, w^2, w, w^2, w^5, 0, w^7, w, w, w^6, w^6, w, w^5, w^3, 2, 1, 1, w^5, 2, 0, 1, w, 2, 0, w^2, 1, w^3, w, w^3, w^3, w^6, w^7, w^3, w^2, 0, w^5, w, w^6, w^6, w^5, w^5, 1, w^3, w^7, w^5, 1, 2, w^3, w^2, w^5, w^3, 1, w^2, 0, w, 1, w, 0, w^5, w^3, w^7, w^2, w^7, 0, w, 0, w^6, w^6, 0, 1, 0, w^3, 0, 2 ] [ 0, 0, 1, 0, w, w^7, w^5, 1, w^2, 2, w^7, 0, 0, w, w, w^5, 0, w^6, 0, w^3, 0, w^5, w, w, w^5, 1, w^5, w^5, 2, 1, w^7, 1, 1, w^7, w^3, w^2, 2, w^7, w^3, w^7, w^2, w^6, 0, 1, w^6, w, w^3, w^3, w, w, 2, 2, w, 0, 0, 0, w^5, 0, w^6, w, w^7, w^7, 2, w^7, 0, w^2, w, 2, 2, 0, w^6, w^3, w^5, w^6, w^2, w, w^7, w^6, 0, 1, w^6, w, w^7, w^7, w^7, 0, w^2, w^5, w^6, w^6, w^3, w^5, w^3, w^2, w^2, w^2, w^5, w^5, w^5, w^7, w^5, 0, w^5, 1, w, w^6, 1, w^7, w^6, w^6, w^3, 2, 1, 2, w^6, w^6, 0 ] [ 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0 ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, w^2, w^6, w^5, w^5, w^6, w^5, w^7, 1, 1, w^3, w^2, w^2, w^2, w, 2, w^7, 2, 2, w^5, w^2, 2, 1, 1, w^3, w^2, w^3, w^6, w^2, w^3, w^7, w^2, w, w^2, w^7, w^6, 2, w^7, w^7, 2, w^5, w^3, w^5, 2, w^6, w^3, w^5, w^7, w^5, w, w^3, w^3, 2, w^3, w^5, w, w^5, w^6, w^3, w, w^3, w^7, w^6, w^2, w^7, w^2, w^7, 2, w^3, w, w^6, 2, w^6, w, w^2, 2, 2, w^6, w^6, w, w^7, 1, w^6, w^6, w^3, w^3, w, w^3, w^2, 0, 0, w^7, w^7, w^6, w^5, 1, w^2, w^7, 1, w^3, 2 ] where w:=Root(x^2 + 2*x + 2)[1,1]; last modified: 2010-11-14
Lb(117,5) = 97 is found by truncation of: Lb(121,5) = 101 BGu Ub(117,5) = 101 follows by the Griesmer bound.
Notes
|