lower bound: | 76 |
upper bound: | 78 |
Construction of a linear code [100,5,76] over GF(5): [1]: [100, 5, 76] Linear Code over GF(5) Construction from a stored generator matrix: [ 1, 0, 0, 0, 1, 1, 2, 0, 4, 2, 4, 3, 4, 1, 3, 0, 2, 1, 1, 0, 3, 2, 1, 3, 4, 3, 1, 4, 0, 3, 2, 0, 4, 0, 3, 0, 0, 1, 3, 2, 4, 0, 2, 0, 3, 2, 2, 0, 2, 3, 4, 4, 0, 4, 3, 2, 2, 1, 3, 1, 0, 1, 4, 4, 2, 4, 2, 4, 4, 1, 1, 0, 4, 3, 3, 1, 2, 2, 3, 4, 2, 4, 2, 3, 0, 0, 0, 1, 0, 4, 1, 4, 0, 4, 0, 2, 4, 2, 2, 1 ] [ 0, 1, 0, 0, 1, 3, 4, 0, 3, 4, 1, 1, 2, 3, 0, 3, 4, 0, 4, 4, 4, 0, 0, 3, 1, 0, 1, 2, 3, 0, 2, 3, 3, 0, 2, 3, 3, 4, 0, 3, 3, 0, 1, 2, 2, 0, 1, 1, 0, 3, 4, 4, 2, 3, 3, 1, 3, 0, 1, 2, 4, 0, 1, 1, 2, 2, 3, 3, 0, 1, 1, 3, 1, 4, 1, 4, 4, 4, 0, 1, 4, 0, 4, 1, 1, 2, 0, 1, 2, 3, 4, 4, 4, 4, 1, 2, 2, 3, 0, 1 ] [ 0, 0, 1, 0, 2, 4, 0, 0, 1, 1, 0, 4, 2, 3, 4, 3, 0, 3, 3, 1, 4, 1, 2, 0, 4, 3, 0, 0, 3, 1, 3, 2, 0, 3, 3, 1, 4, 0, 2, 2, 4, 2, 3, 4, 2, 4, 2, 4, 4, 2, 0, 4, 4, 3, 2, 2, 0, 1, 2, 4, 3, 0, 3, 4, 4, 1, 3, 0, 0, 0, 4, 4, 3, 0, 4, 3, 1, 2, 3, 2, 3, 4, 1, 1, 0, 2, 1, 2, 0, 2, 1, 2, 0, 1, 3, 1, 4, 1, 3, 1 ] [ 0, 0, 0, 1, 4, 2, 1, 0, 4, 0, 1, 2, 4, 3, 3, 4, 3, 0, 1, 3, 0, 3, 2, 4, 1, 3, 1, 1, 3, 4, 2, 3, 0, 3, 3, 0, 2, 2, 0, 0, 3, 1, 0, 4, 1, 0, 2, 0, 2, 4, 0, 1, 1, 2, 3, 4, 1, 1, 0, 3, 0, 3, 0, 4, 4, 2, 0, 3, 4, 4, 0, 0, 3, 1, 2, 3, 4, 3, 2, 3, 3, 2, 1, 1, 2, 0, 2, 1, 3, 1, 3, 2, 4, 3, 1, 3, 0, 3, 4, 2 ] [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] last modified: 2004-04-22
Lb(100,5) = 76 is found by truncation of: Lb(103,5) = 79 Koh Ub(100,5) = 78 follows by the Griesmer bound.
Notes
|