| lower bound: | 70 | 
| upper bound: | 70 | 
Construction of a linear code [90,4,70] over GF(5):
[1]:  [95, 4, 75] Linear Code over GF(5)
     Construction from a stored generator matrix:
[ 1, 0, 0, 0, 4, 1, 0, 1, 0, 3, 1, 0, 2, 0, 2, 1, 1, 0, 4, 4, 1, 1, 1, 4, 3, 1, 1, 3, 4, 1, 1, 2, 0, 3, 4, 1, 2, 1, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3, 3, 1, 1, 3, 0, 2, 4, 1, 3, 1, 2, 3, 1, 3, 2, 2, 2, 1, 4, 0, 1, 4, 0, 4, 1, 0, 3, 0, 0, 1, 4, 3, 0, 0, 2, 4, 2, 0, 0, 3, 4, 1, 0, 2, 1, 2, 3 ]
[ 0, 1, 0, 0, 1, 1, 1, 4, 1, 2, 2, 1, 3, 2, 3, 0, 0, 1, 1, 0, 1, 0, 0, 2, 1, 3, 0, 3, 4, 3, 0, 4, 2, 2, 4, 1, 4, 1, 3, 0, 2, 4, 0, 4, 1, 3, 4, 4, 0, 2, 0, 3, 1, 3, 3, 1, 3, 2, 4, 4, 2, 3, 1, 0, 0, 0, 2, 4, 4, 2, 2, 1, 3, 1, 2, 2, 0, 4, 2, 1, 3, 0, 3, 3, 2, 4, 0, 2, 4, 3, 2, 3, 1, 4, 4 ]
[ 0, 0, 1, 0, 4, 4, 1, 2, 4, 4, 3, 2, 3, 3, 4, 1, 1, 0, 0, 0, 0, 2, 1, 4, 0, 3, 4, 3, 2, 0, 2, 2, 4, 0, 1, 1, 3, 0, 4, 1, 0, 4, 1, 3, 1, 4, 0, 2, 2, 1, 3, 3, 1, 0, 2, 2, 4, 4, 4, 2, 1, 0, 0, 3, 2, 4, 4, 2, 0, 3, 3, 1, 2, 3, 4, 4, 2, 1, 3, 0, 3, 3, 2, 2, 0, 2, 4, 3, 1, 0, 1, 4, 4, 3, 2 ]
[ 0, 0, 0, 1, 1, 0, 4, 0, 2, 1, 0, 3, 0, 3, 1, 4, 0, 1, 1, 1, 4, 4, 1, 2, 1, 4, 2, 1, 4, 1, 3, 0, 2, 1, 1, 3, 4, 2, 2, 1, 3, 3, 2, 3, 1, 3, 2, 2, 4, 1, 2, 0, 1, 1, 1, 2, 4, 3, 2, 1, 2, 3, 3, 3, 1, 1, 0, 4, 1, 1, 1, 4, 0, 2, 0, 0, 4, 1, 2, 0, 0, 3, 1, 3, 0, 0, 2, 1, 4, 0, 3, 4, 3, 2, 0 ]
[2]:  [90, 4, 70] Linear Code over GF(5)
     Puncturing of [1] at { 91 .. 95 }
last modified: 2001-12-17
Lb(90,4) = 70 is found by truncation of: Lb(95,4) = 75 BKM Ub(90,4) = 70 follows by a one-step Griesmer bound from: Ub(19,3) = 14 is found by considering truncation to: Ub(17,3) = 12 Hi4
Hi4: R. Hill, Optimal linear codes, pp. 75-104 in: Cryptography and Coding II (C. Mitchell, ed.), Oxford Univ. Press, 1992.
Notes
  |