| lower bound: | 103 |
| upper bound: | 103 |
Construction of a linear code [120,4,103] over GF(8):
[1]: [121, 4, 104] Linear Code over GF(2^3)
code found by Axel Kohnert
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w^5, w^5, 0, 0, w^3, w^3, w^6, w^6, 1, 1, w^5, w^4, 0, w^4, w^5, w^6, w, w^5, w^4, w^2, w^4, w^2, w^3, w^3, w, w^5, w^3, 1, w^5, 1, 1, 1, w^5, w^3, 1, 1, w^4, 0, w^3, 1, w^4, w^6, w, w^4, w^4, w^4, w, w^2, 1, w, 1, w^6, w^5, w^5, w^2, w^2, w^5, w, w, 0, w, w^2, w^3, w^4, w, w^3, w, w^3, w^5, w^4, w, w^6, w^6, w^2, w^6, w^5, 1, 1, w^3, w^3, w^4, 0, w, w, 0, w^3, w^3, 0, w^2, w^3, w^4, w^4, w^6, w^4, w^2, 0, w^3, 0, w^3, w, w, 1, w, 0, 1, 1, w^5, w^4, w, w^5, 1, w^4, 0, w^5, w^5 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, w, w, w^2, w^2, 1, 1, w^4, w^4, 0, w, w^6, w^5, w^3, 1, w, w^2, w, w^3, w^3, w^3, w^2, 1, w^2, w^2, w^2, w^6, w^4, 1, w^5, 1, w^4, w, w^6, w^5, 0, 1, w^3, w^3, w^6, w^4, w^4, w^6, w^4, w^6, w^4, w^5, w^2, w, 1, w^4, w^3, w, w^4, w, w, w^3, 1, 1, w^6, w^2, 0, w^5, w^3, 1, w^4, w^4, w^2, w^6, w^6, w^6, w^2, w^4, w^2, 1, w^3, w^6, w^5, w^6, w^3, 1, 0, w^3, w^3, 0, w^6, w, 1, w^3, 0, w^4, w^6, w^2, 1, w^2, 0, w, w, 0, w, w^4, 0, w^2, w, w^3, w^6, w, w^3, w^6, w^4, w^5, w^5, 0, w^2 ]
[ 0, 0, 1, 1, 0, 0, w^4, w^4, w^4, w^4, w^2, w^2, w^3, w^3, w^4, w^4, w^3, 1, w^5, w^5, w, w^6, 0, w^5, w^3, 0, w^5, 1, 1, w^4, w^6, 0, w^3, w^3, w, w^2, w^3, w^5, 0, w^2, w^2, 1, w^6, w, w^4, w^2, w^6, w^6, w^5, 0, w^2, w^5, w^2, 1, 1, w^3, w, 0, 1, 0, w^5, w^2, 1, w^2, w^6, w^2, 0, w^6, w^6, w^3, w^4, w^5, w, w^6, w^3, w^2, w^3, w^6, 0, w^6, w^5, w^5, w^5, 0, w^5, w^6, w, w^4, w^6, 0, w^4, w^3, w^2, 0, w^3, 1, 1, w^4, w^5, w^2, w^6, 1, w^4, w^3, w^4, 0, 1, 1, w^5, w, w, w^3, 1, w^5, w^6, w^4, w^3, w^6, w^2, w^2, w^4 ]
[ 0, 0, 0, 0, 1, 1, w^5, w^5, w^6, w^6, 1, 1, w^3, w^3, 1, 1, w, w, w^3, 1, 0, w^6, w^3, w, 0, w, w^6, w^3, w^2, w^4, 0, w^6, w^4, w^5, w^6, w^2, w^6, w^5, w^5, w^5, 0, w^5, w^2, w, w^2, w^4, 1, w, 0, w^2, w^3, w^3, w^3, w^5, w^2, 0, w, w^5, w^3, w^3, 0, w^5, w, w^4, w^6, w^2, w^2, 0, w^2, w^6, w^2, w^5, w^6, w, w^4, 0, w^5, 1, w^6, w, w, w^5, w^6, w^2, 1, 1, 0, w^4, w^2, w, w^2, w, 0, w^3, w^3, w^3, 0, 1, w^3, 1, w^6, w^2, w^5, 0, w^6, 1, w, w^4, w^4, w^5, 1, 1, w^6, w^2, w^5, w, w^2, w^3, w, w^6, w^3 ] where w:=Root(x^3 + x + 1)[1,1];
[2]: [120, 4, 103] Linear Code over GF(2^3)
Puncturing of [1] at { 121 }
last modified: 2006-06-27
Lb(120,4) = 103 is found by truncation of: Lb(121,4) = 104 Koh Ub(120,4) = 103 follows by a one-step Griesmer bound from: Ub(16,3) = 12 Hi4
Koh: Axel Kohnert, email, 2006.
Notes
|