| lower bound: | 64 |
| upper bound: | 70 |
Construction of a linear code [156,16,64] over GF(2):
[1]: [153, 16, 64] Quasicyclic of degree 3 Linear Code over GF(2)
QuasiCyclicCode of length 153 with generating polynomials: x^43 + x^39 + x^36 + x^32 + x^28 + x^26 + x^20 + x^19 + x^18 + x^17 + x^15 + x^11 + x^5 + x^3 + x + 1, x^45 + x^43 + x^41 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^30 + x^29 + x^28 + x^27 + x^26 + x^23 + x^19 + x^18 + x^13 + x^12 + x^10 + x^7 + x^4 + x^3 + 1, x^46 + x^45 + x^44 + x^43 + x^42 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^32 + x^31 + x^30 + x^29 + x^27 + x^25 + x^24 + x^21 + x^20 + x^19 + x^17 + x^15 + x^14 + x^13 + x^11 + x^9 + x^7 + x^6 + x^5 + x + 1
[2]: [156, 16, 64] Linear Code over GF(2)
PadCode [1] by 3
last modified: 2001-01-30
Lb(156,16) = 64 is found by taking a subcode of: Lb(156,18) = 64 is found by adding a parity check bit to: Lb(155,18) = 63 Gra Ub(156,16) = 70 follows by a one-step Griesmer bound from: Ub(85,15) = 35 is found by considering truncation to: Ub(84,15) = 34 Ja
Ja: D.B. Jaffe, Binary linear codes: new results on nonexistence, 1996, code.ps.gz.
Notes
|