| lower bound: | 94 |
| upper bound: | 96 |
Construction of a linear code [208,14,94] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [1, 1, 1] Cyclic Linear Code over GF(2^2)
UniverseCode of length 1 over GF(4)
[3]: [6, 3, 4] Linear Code over GF(2^2)
Extend the QRCode over GF(4)of length 5
[4]: [63, 6, 44] "BCH code (d = 44, b = 63)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 44 0
[5]: [63, 4, 47] "BCH code (d = 47, b = 1)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 47
[6]: [63, 7, 43] "BCH code (d = 43, b = 1)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 43
[7]: [70, 7, 48] Linear Code over GF(2^2)
ConstructionXX using [6] [5] [4] [3] and [2]
[8]: [210, 14, 96] Quasicyclic of degree 70 Linear Code over GF(2)
ConcatenatedCode of [7] and [1]
[9]: [208, 14, 94] Linear Code over GF(2)
Puncturing of [8] at { 209 .. 210 }
last modified: 2001-01-30
Lb(208,14) = 94 is found by truncation of: Lb(210,14) = 96 BZ Ub(208,14) = 96 otherwise adding a parity check bit would contradict: Ub(209,14) = 97 BK
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
Notes
|