lower bound: | 94 |
upper bound: | 96 |
Construction of a linear code [208,14,94] over GF(2): [1]: [3, 2, 2] Cyclic Linear Code over GF(2) CordaroWagnerCode of length 3 [2]: [1, 1, 1] Cyclic Linear Code over GF(2^2) UniverseCode of length 1 over GF(4) [3]: [6, 3, 4] Linear Code over GF(2^2) Extend the QRCode over GF(4)of length 5 [4]: [63, 6, 44] "BCH code (d = 44, b = 63)" Linear Code over GF(2^2) BCHCode over GF(4) with parameters 63 44 0 [5]: [63, 4, 47] "BCH code (d = 47, b = 1)" Linear Code over GF(2^2) BCHCode over GF(4) with parameters 63 47 [6]: [63, 7, 43] "BCH code (d = 43, b = 1)" Linear Code over GF(2^2) BCHCode over GF(4) with parameters 63 43 [7]: [70, 7, 48] Linear Code over GF(2^2) ConstructionXX using [6] [5] [4] [3] and [2] [8]: [210, 14, 96] Quasicyclic of degree 70 Linear Code over GF(2) ConcatenatedCode of [7] and [1] [9]: [208, 14, 94] Linear Code over GF(2) Puncturing of [8] at { 209 .. 210 } last modified: 2001-01-30
Lb(208,14) = 94 is found by truncation of: Lb(210,14) = 96 BZ Ub(208,14) = 96 otherwise adding a parity check bit would contradict: Ub(209,14) = 97 BK
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
Notes
|