| lower bound: | 105 |
| upper bound: | 106 |
Construction of a linear code [224,12,105] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [78, 6, 56] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w^2, w^2, w^2, w, 0, 1, 0, w^2, 1, 1, 1, w^2, w^2, w^2, 1, 1, w^2, w^2, 1, w, w, w^2, 0, w, 0, 0, 1, 1, w^2, 0, w^2, w, w^2, w^2, 1, 1, 0, 0, w^2, 1, w^2, 1, 0, w^2, 1, 0, w, 0, w, w, w^2, w, w, w^2, 0, w^2, 0, 0, w^2, w, 1, w, w, 1, w^2, w, w^2, 0, 0, w^2, 0, w ]
[ 0, 1, 0, 0, 0, 0, 1, w, w, 0, w, w, 1, 1, 1, w^2, w^2, 0, w, w, 1, w^2, 0, w, 1, w, 1, w^2, w^2, w^2, w, 0, w, w^2, 0, w^2, 1, 0, w^2, 0, 1, w^2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, w^2, w, w^2, 1, w^2, 0, 1, w^2, w^2, 1, w^2, 0, 1, 0, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, w^2 ]
[ 0, 0, 1, 0, 0, 0, 1, 0, w^2, 1, 0, 0, w, 0, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, 1, 0, w, 1, 0, w^2, 0, w^2, w, w, 0, w, 0, w, w, 1, w^2, w, w^2, w^2, 1, 1, w^2, 0, w, 1, 0, w^2, 1, w, w^2, 1, 0, 0, 0, w^2, 0, w^2, w, 1, w^2, 1, w, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, 1, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 1, w^2, 0, w, 0, 1, w, w, w, 1, 1, 1, w, w, 1, 1, w, w^2, w^2, 1, 0, w^2, 0, 0, w, w, 1, 0, 1, w^2, 1, w^2, w, w, 0, 0, 1, w, 1, w, 0, 1, w, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, 1, 0, 1, 0, 0, 1, w^2, w, w^2, w^2, w, 1, w^2, 1, 0, 0, 1, 0, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
[3]: [75, 6, 55] Linear Code over GF(2^2)
Puncturing of [2] at { 76 .. 78 }
[4]: [225, 12, 106] Quasicyclic of degree 75 Linear Code over GF(2)
ConcatenatedCode of [3] and [1]
[5]: [224, 12, 105] Linear Code over GF(2)
Puncturing of [4] at { 225 }
last modified: 2019-04-09
Lb(224,12) = 105 is found by truncation of: Lb(225,12) = 106 BZ Ub(224,12) = 107 follows by a one-step Griesmer bound from: Ub(116,11) = 53 Ja
Ja: D.B. Jaffe, Binary linear codes: new results on nonexistence, 1996, code.ps.gz.
Notes
|