| lower bound: | 97 |
| upper bound: | 100 |
Construction of a linear code [212,12,97] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [78, 6, 56] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w^2, w^2, w^2, w, 0, 1, 0, w^2, 1, 1, 1, w^2, w^2, w^2, 1, 1, w^2, w^2, 1, w, w, w^2, 0, w, 0, 0, 1, 1, w^2, 0, w^2, w, w^2, w^2, 1, 1, 0, 0, w^2, 1, w^2, 1, 0, w^2, 1, 0, w, 0, w, w, w^2, w, w, w^2, 0, w^2, 0, 0, w^2, w, 1, w, w, 1, w^2, w, w^2, 0, 0, w^2, 0, w ]
[ 0, 1, 0, 0, 0, 0, 1, w, w, 0, w, w, 1, 1, 1, w^2, w^2, 0, w, w, 1, w^2, 0, w, 1, w, 1, w^2, w^2, w^2, w, 0, w, w^2, 0, w^2, 1, 0, w^2, 0, 1, w^2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, w^2, w, w^2, 1, w^2, 0, 1, w^2, w^2, 1, w^2, 0, 1, 0, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, w^2 ]
[ 0, 0, 1, 0, 0, 0, 1, 0, w^2, 1, 0, 0, w, 0, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, 1, 0, w, 1, 0, w^2, 0, w^2, w, w, 0, w, 0, w, w, 1, w^2, w, w^2, w^2, 1, 1, w^2, 0, w, 1, 0, w^2, 1, w, w^2, 1, 0, 0, 0, w^2, 0, w^2, w, 1, w^2, 1, w, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, 1, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 1, w^2, 0, w, 0, 1, w, w, w, 1, 1, 1, w, w, 1, 1, w, w^2, w^2, 1, 0, w^2, 0, 0, w, w, 1, 0, 1, w^2, 1, w^2, w, w, 0, 0, 1, w, 1, w, 0, 1, w, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, 1, 0, 1, 0, 0, 1, w^2, w, w^2, w^2, w, 1, w^2, 1, 0, 0, 1, 0, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
[3]: [71, 6, 55] Linear Code over GF(2^2)
Puncturing of [2] at { 72 .. 78 }
[4]: [213, 12, 98] Quasicyclic of degree 71 Linear Code over GF(2)
ConcatenatedCode of [3] and [1]
[5]: [212, 12, 97] Linear Code over GF(2)
Puncturing of [4] at { 213 }
last modified: 2001-01-30
Lb(212,12) = 97 is found by truncation of: Lb(213,12) = 98 BZ Ub(212,12) = 100 follows by a one-step Griesmer bound from: Ub(111,11) = 50 Ja
Ja: D.B. Jaffe, Binary linear codes: new results on nonexistence, 1996, code.ps.gz.
Notes
|