| lower bound: | 96 |
| upper bound: | 99 |
Construction of a linear code [208,12,96] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [1, 1, 1] Cyclic Linear Code over GF(2^2)
UniverseCode of length 1 over GF(4)
[3]: [6, 3, 4] Linear Code over GF(2^2)
Extend the QRCode over GF(4)of length 5
[4]: [63, 6, 44] "BCH code (d = 44, b = 63)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 44 0
[5]: [63, 4, 47] "BCH code (d = 47, b = 1)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 47
[6]: [63, 7, 43] "BCH code (d = 43, b = 1)" Linear Code over GF(2^2)
BCHCode over GF(4) with parameters 63 43
[7]: [70, 7, 48] Linear Code over GF(2^2)
ConstructionXX using [6] [5] [4] [3] and [2]
[8]: [210, 14, 96] Quasicyclic of degree 70 Linear Code over GF(2)
ConcatenatedCode of [7] and [1]
[9]: [208, 12, 96] Linear Code over GF(2)
Shortening of [8] at { 209 .. 210 }
last modified: 2001-01-30
Lb(208,12) = 96 is found by shortening of: Lb(210,14) = 96 BZ Ub(208,12) = 99 follows by a one-step Griesmer bound from: Ub(108,11) = 49 follows by a one-step Griesmer bound from: Ub(58,10) = 24 follows by a one-step Griesmer bound from: Ub(33,9) = 12 He
He: P.W. Heijnen, Er bestaat geen binaire [33,9,13] code, Afstudeerverslag, T.U. Delft, Oct. 1993.
Notes
|