| lower bound: | 96 |
| upper bound: | 105 |
Construction of a linear code [171,12,96] over GF(3):
[1]: [10, 4, 6] Linear Code over GF(3)
Shortening of [9] at { 11 .. 12 }
[2]: [18, 3, 16] Linear Code over GF(3^3)
Shortening of [5] at { 19 }
[3]: [162, 9, 96] Linear Code over GF(3)
ZinovievCode using inner codes: [10], outer codes: [2]
[4]: [18, 1, 18] Cyclic Linear Code over GF(3)
RepetitionCode of length 18
[5]: [19, 4, 16] Linear Code over GF(3^3)
MDSCode of length 19 and dimension 4 over GF(27)
[6]: [18, 4, 15] Linear Code over GF(3^3)
Puncturing of [5] at { 19 }
[7]: [11, 6, 5] Cyclic Linear Code over GF(3)
Puncturing of [9] at { 12 }
[8]: [9, 4, 5] Linear Code over GF(3)
Shortening of [7] at { 10 .. 11 }
[9]: [12, 6, 6] Linear Code over GF(3)
Extend the QRCode over GF(3)of length 11
[10]: [9, 3, 6] Linear Code over GF(3)
Shortening of [9] at { 10 .. 12 }
[11]: [162, 13, 90] Linear Code over GF(3)
ZinovievCode using inner codes: [10] [8], outer codes: [6] [4]
[12]: [172, 13, 96] Linear Code over GF(3)
ConstructionX using [11] [3] and [1]
[13]: [171, 12, 96] Linear Code over GF(3)
Shortening of [12] at { 172 }
last modified: 2001-12-17
Lb(171,12) = 96 is found by shortening of: Lb(172,13) = 96 XBZ Ub(171,12) = 105 Gur
XBZ:
Notes
|