| lower bound: | 69 |
| upper bound: | 75 |
Construction of a linear code [126,12,69] over GF(3):
[1]: [121, 116, 3] "Hamming code (r = 5)" Linear Code over GF(3)
5-th order HammingCode over GF( 3)
[2]: [121, 5, 81] Cyclic Linear Code over GF(3)
Dual of [1]
[3]: [119, 5, 79] Linear Code over GF(3)
Puncturing of [2] at { 120 .. 121 }
[4]: [40, 4, 27] Linear Code over GF(3)
ResidueCode of [3]
[5]: [38, 4, 25] Linear Code over GF(3)
Puncturing of [4] at { 39 .. 40 }
[6]: [13, 3, 9] Linear Code over GF(3)
ResidueCode of [5]
[7]: [11, 3, 7] Linear Code over GF(3)
Puncturing of [6] at { 12 .. 13 }
[8]: [4, 2, 3] Linear Code over GF(3)
ResidueCode of [7]
[9]: [1, 1, 1] Cyclic Linear Code over GF(3)
RepetitionCode of length 1
[10]: [121, 10, 69] Quasicyclic of degree 11 Linear Code over GF(3)
QuasiCyclicCode of length 121 with generating polynomials: 2*x^10 + x^3, x^10 + 2*x^9 + 2*x^6 + 2*x^5 + 2*x^2 + x + 2, 2*x^10 + x^9 + 2*x^8 + x^7 + x^5 + 2*x^4 + x^3 + x^2 + 2*x + 2, 2*x^8 + x^7 + x^6 + x^5 + 2*x^4 + 2*x^2 + 2*x + 1, x^10 + x^9 + 2*x^8 + x^7 + 2*x^6 + x^5 + x^2 + x + 2, 2*x^10 + 2*x^9 + 2*x^8 + x^6 + x^3 + 1, x^10 + 2*x^6 + 2*x^5 + x^3 + x^2 + 2, 2*x^9 + 2*x^6 + x^3 + x^2 + 2*x + 1, 2*x^10 + x^9 + x^8 + x^6 + x^4 + x^2 + 2*x, x^8 + x^7 + x^6 + x^5 + 2*x^4 + 2*x^2 + 2*x + 2, 2*x^10 + x^8 + x^5 + x^4 + 2*x^3 + 2*x
[11]: [121, 11, 66] Quasicyclic of degree 11 Linear Code over GF(3)
QuasiCyclicCode of length 121 with generating polynomials: x^2, x^9 + x^8 + x^7 + x^3 + 2*x + 1, x^10 + 2*x^9 + x^8 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 1, x^10 + 2*x^9 + 2*x^8 + x^7 + 2*x^6 + 2*x^2 + 2*x + 2, x^10 + x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2, 2*x^7 + x^5 + 2*x^3 + x^2 + x, 2*x^9 + 2*x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + 2*x + 1, x^9 + 2*x^7 + 2*x^3 + x^2 + x + 2, x^10 + x^6 + x^5 + x^3 + x^2 + 2*x + 2, x^10 + 2*x^9 + 2*x^8 + 2*x^6 + 2*x^3 + 2*x^2 + 2*x + 2, 2*x^10 + x^7 + 2*x^6 + x^4 + 2*x^3 + x^2
[12]: [121, 12, 65] Quasicyclic of degree 11 Linear Code over GF(3)
QuasiCyclicCode of length 121 stacked to height 2 with generating polynomials: 0, 0, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, 2*x^10 + 2*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 2, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, 2*x^10 + 2*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 2, 2*x^10 + 2*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 2, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, 0, 0, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, x^2, x^9 + x^8 + x^7 + x^3 + 2*x + 1, x^10 + 2*x^9 + x^8 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 1, x^10 + 2*x^9 + 2*x^8 + x^7 + 2*x^6 + 2*x^2 + 2*x + 2, x^10 + x^8 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2, 2*x^7 + x^5 + 2*x^3 + x^2 + x, 2*x^9 + 2*x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + 2*x + 1, x^9 + 2*x^7 + 2*x^3 + x^2 + x + 2, x^10 + x^6 + x^5 + x^3 + x^2 + 2*x + 2, x^10 + 2*x^9 + 2*x^8 + 2*x^6 + 2*x^3 + 2*x^2 + 2*x + 2, 2*x^10 + x^7 + 2*x^6 + x^4 + 2*x^3 + x^2
[13]: [126, 12, 69] Linear Code over GF(3)
Apply ConstructionXChain to [12] [11] [10] and [9] then apply ConstructionX using [8]
last modified: 2010-01-04
Lb(126,12) = 68 is found by truncation of: Lb(127,12) = 69 GW2 Ub(126,12) = 75 LP
LP: Follows from the linear programming bound.
Notes
|