| lower bound: | 36 |
| upper bound: | 39 |
Construction of a linear code [69,11,36] over GF(3):
[1]: [69, 11, 36] Quasicyclic of degree 3 Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 0, 2, 2, 2, 1, 1, 2, 0, 0, 2, 0, 2, 2, 2, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 2, 1, 2, 0, 1, 1, 0, 0, 0, 1, 0, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 1, 2, 2, 2, 1, 1, 2, 0, 0, 2, 0, 2, 2, 2, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 2, 1, 2, 0, 1, 1, 0, 0, 0, 1, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 1, 2, 2, 2, 1, 1, 2, 0, 0, 2, 0, 2, 2, 2, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 2, 1, 2, 0, 1, 1, 0, 0, 0, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 2, 2, 0, 1, 2, 2, 0, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 0, 2, 2, 0, 1, 0, 1, 1, 2, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 2, 0, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 2, 2, 0, 1, 2, 0, 0, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 0, 2, 2, 0, 1, 0, 1, 1, 2, 0 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 1, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 1, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 2, 2, 1, 0, 2, 1, 2, 0, 0, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 2, 2, 0, 2, 0, 0, 1, 2, 2, 2, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 1, 0, 2, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 2, 2, 1, 1, 0, 2, 0, 2, 1, 2, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 0, 0, 2, 2, 1, 0, 1, 1, 1, 1, 2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 2, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 2, 2, 2, 2, 1, 0, 2, 0, 0, 0, 2, 1, 2, 1, 0, 0, 1, 1, 0, 1, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 0, 1, 2, 2, 1, 1, 2, 0, 0, 2, 0, 2, 2, 2, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 2, 1, 2, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1 ]
last modified: 2003-09-25
Lb(69,11) = 36 Bou Ub(69,11) = 39 follows by a one-step Griesmer bound from: Ub(29,10) = 13 follows by a one-step Griesmer bound from: Ub(15,9) = 4 vE2
vE2: M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory 41 (1995) 800-805.
Notes
|