| lower bound: | 12 |
| upper bound: | 13 |
Construction of a linear code [30,11,12] over GF(3):
[1]: [36, 18, 12] Linear Code over GF(3)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 0, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ]
[2]: [30, 12, 12] Linear Code over GF(3)
Shortening of [1] at { 31 .. 36 }
[3]: [30, 11, 12] Linear Code over GF(3)
Subcode of [2]
last modified: 2001-12-17
Lb(30,11) = 12 is found by taking a subcode of: Lb(30,12) = 12 is found by shortening of: Lb(36,18) = 12 Ple Ub(30,11) = 13 follows by a one-step Griesmer bound from: Ub(16,10) = 4 is found by considering shortening to: Ub(15,9) = 4 vE2
vE2: M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory 41 (1995) 800-805.
Notes
|